
Sub-file hashing Windows OS
Creating sub-file hash database for forensic

analysis

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Software and Information Engineering

by

David Tichy
Registration Number 00953189

to the Faculty of Informatics

at the TU Wien

Advisor: Dipl.-Ing. Dr. Martin Schmiedecker

Vienna, 3rd June, 2018
David Tichy Martin Schmiedecker

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

David Tichy
Lassallestrasse 40/2/14, 1020 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 3. Juni 2018
David Tichy

iii

Acknowledgements

I would like to thank Dr. Martin Schmiedecker and Dr. Katharina Krombholz who filled
me with enthusiasm for the topic digital forensics and especially in context of this work
Dr. Martin Schmiedecker who helped me to choose this topic.

Also I’d like to thank all of my study colleagues, who supported me during the years of
the bachelors program at the Technical University of Vienna.

v

Abstract

For efficient forensic analysis of a given hard drive, it is important to reduce the quantity
of data, which should be processed. This can be achieved by white listening known files
and excluding them from further analysis. The National Institute of Standards and
Technology (NIST) provides a database of known files and corresponding MD5 and SHA1
hashes, called the National Software Reference Library (NSRL), which is already in use
by distributed forensic software like EnCase.
Based on the paper PeekaTorrent [SN16], by Sebastian Neuner, I used the technique
of hash-bases carving, which is executed by the tool hashdb mentioned in the paper, to
create sub-file hashes and extend the NSRL for known files in operational systems.

vii

Contents

Abstract vii

Contents ix

1 Background 1

2 Preanalysis 3

3 Implementation and methods 5
3.1 Obstacles . 9

4 Data analysis 13

5 Conclusion 27

6 Discussion 29

7 Future work 31

8 Used tools 33

Appendix 35

List of Figures 36

List of Tables 37

Bibliography 39

ix

CHAPTER 1
Background

Digital forensics involves the extraction and analysis of digital media to identify potential
evidence. Over time researchers came up multiple disciplines to extract data like file
system extraction, to gather data and information from hard drives (file system forensic)
[Car05], memory forensics, for extracting RAM data, or network forensics. Additionally,
metadata can also be extracted, for example when a certain file has to be created, which
later on would lead to further increase of the volume of data a forensic investigator
would’ve to analyse.

Another issue is the increasing storage size of future hardware (Hard drives, RAM), and
the fact, that home hardware isn’t the only source of forensic analysis. Smartphones,
notebooks or Internet of Things (IoT)-devices are reliable sources for forensic nvesti-
gations. All those facts combined will make manual forensic analysis in future more
difficult, so in recent years some approaches were developed to oppose these challenges.
One approach is to reduce the volume of data, which should be manually processed by
marking notable files (blacklisting files), or exclude known (benign) files (whitelisting
files) from analysis. A way to realise this approach is to collect common files, create
hashsums of these and prepare a list including the hashvalues of hem. The NSRL is such
a list with known files.

To exclude files from the forensic a nalysis in this approach, the whole file mustn’t
be changed. I case a file is partially manipulated or incomplete, the file will not be
excluded from manual analysis. With hash-bases carving we can encounter this issue,
by hashing data blocks of a given file instead of hashing the complete one. [SLGa14]
The open-source tool hashdb provides the algorithms for hash-bases carving and a cus-
tom database to perform efficient hash lookups. For example a 2 TB hard drive, New
Technology File System (NTFS) formattet with 4KB blocksize, contains over 488 million
sectors, which has to be processed fast for further forensic analysis.

1

1. Background

For this project I combined the NSRL with the hash-bases carving technique to reduce
manual forensic analysis of a given image by extracting known operational system files
and inserting the sub-file hashes of those operational system files into a hashdb database.
The generated databases can be used afterwards in the forensic tool bulk_extractor.

• Which operational system should be used for efficent support of forensic work

• Are there enough files, which are found in the NSRL dataset and can they be used
in data processing for forensic analysis

• Can the process, of generating sub-file hashes, been easily reproduced or even
automated

2

CHAPTER 2
Preanalysis

As targeted operational systems I decided to take Windows 7, Windows 10 and Windows
Server 2016. In the context of my scientific work for SBA Research, I evaluated, that
Windows is the most used desktop operational system and therefore frequently seen in
forensic work.
To carry out the project I decided to work on an UNIX operational system, Arch Linux
exactly, for three reasons. I needed the open-source tool hfind, which is only available
for UNIX operational systems, the open-source tool hashdb (https://github.com/NPS-
DEEP/hashdb) works flawless without further configuration and the out-of-the-box
provided common UNIX tools for shell support the implementation of the project. The
NSRL datasets, Version 2.57 1, were seperated into smaller sets, but for this project I
needed the modern dataset 2, which contains data of applications from the year 2000 to
present. With a size of 3.2 GB this is also the largest dataset.

1https://www.nist.gov/itl/ssd/cs/current-rds-hash-sets
2https://s3.amazonaws.com/rds.nsrl.nist.gov/RDS/current/RDS_modern.iso

3

https://github.com/NPS-DEEP/hashdb
https://github.com/NPS-DEEP/hashdb
https://www.nist.gov/itl/ssd/cs/current-rds-hash-sets
https://s3.amazonaws.com/rds.nsrl.nist.gov/RDS/current/RDS_modern.iso

CHAPTER 3
Implementation and methods

For this work I performed following steps:

1. Obtain a installation of Windows 7, Windows 10 and Windows Server 2016

2. Install every Windows version on a seperate virtual disk

3. Extract a raw copy of each virtual disk and save them in seperate RAW files

4. Obtain the NSRL dataset

5. Mount the RAW file, which will be worked with, read only

6. Identify all files from the image, which are found in the glsnsrl dataset and generate
a list with the found files

7. Create the HashDB databases in the sizes 4KB, 8KB, 16KB, 32KB, 64KB and
128KB

8. Use the generated list of found files in the NSRL dataset and ingest all the HashDB
database with the files

9. Generate the raw datafiles and the statistic from HashDB for further analysis

I obtained three Windows versions for this project:

• Windows 7 x64 Professional SP1 at TU Wien ZID 1

• Windows 10 Education 32/64-bit (English) at Microsoft Imagine Premium 2

• Windows Server 2016 Datacenter 64-bit (German) at Microsoft Imagine Premium 3

1https://www.zid.tuwien.ac.at/sts/
2https://www.informatik.tuwien.ac.at/msdnaa
3https://www.informatik.tuwien.ac.at/msdnaa

5

https://www.zid.tuwien.ac.at/sts/
https://www.informatik.tuwien.ac.at/msdnaa
https://www.informatik.tuwien.ac.at/msdnaa

3. Implementation and methods

All three version were installed with Oracle VMWare on a seperate Virtual Disk Image
(VDI) file and than needed to be extracted to a seperate Raw image format (RAW) image
for further processing. It lies in the nature of digital forensic work to hash all files before
and after working with them, to ensure that no data is changed in the process, so a hash
sum has to be generated and I choose a SHA256 hash.

Command

1 qemu-img convert -f vdi [vdi image here]
-O raw [raw path]

2 sha256sum [raw path]

Table 31: Convert given VDI image to RAW image.

Next I extracted the files of the given image by mounting the image and search for all
files with the tool find.

Command

1 fdisk -l [raw path]
2 mount --read-only -oloop,offset=[calculated offset]

[raw path] [mount path]
3 find [mount point] -type f -exec sha1sum "{}" +

> fileListSha1Sum.txt

Table 32: Mount given RAW. image and extract all file paths.

For mounting the raw image I had to define a byte offset to mount the desired partition
and this offset can be calculated with the information from fdisk. Following source helped
me with this issue https://major.io/2010/12/14/mounting-a-raw-partition-file-made-with-
dd-or-dd_rescue-in-linux/
In my project the output of the Windows 7 image was

For example I needed the Partition windows7.raw2, I took the start sector 206848 and
multiply it with the block size, which is 512. The calculated offset for this image is
105906176.
Before I could proceed, I needed to preapre the NSRL dataset for hfind, by creating a
index.

The NSRL dataset only provides MD5 or SHA1 hashes. When the index was created,
than I executed hfind for every file in the given image and got as result a file with the
same amount of lines as the given file which contains the paths to the files. Afterwards I
combined both files which will be used for hashdb.

6

https://major.io/2010/12/14/mounting-a-raw-partition-file-made-with-dd-or-dd_rescue-in-linux/
https://major.io/2010/12/14/mounting-a-raw-partition-file-made-with-dd-or-dd_rescue-in-linux/

Command

1 Units: sectors of 1 * 512 = 512 bytes
2 Sector size (logical/physical): 512 bytes / 512 bytes
3 I/O size (minimum/optimal): 512 bytes / 512 bytes
4 Disklabel type: dos
5 Disk identifier: 0xf9a1a64d
6 Device Boot Start End Sectors

Size Id Type
7 windows7.raw1 * 2048 206847 204800

100M 7 HPFS/NTFS/exFAT
8 windows7.raw2 206848 41940991 41734144

19,9G 7 HPFS/NTFS/exFAT

Table 33: Output of fdisk.

Command

1 hfind -i nsrl-sha1 [path to NSRLFile.txt]

Table 34: Create index for hfind.

Hashdb needs to be set up by creating the database with a defined blocksize for the

Command

1 cut -d ’ ’ -f 1 fileListSha1Sum.txt |
xargs -L1 hfind -q [path to NSRLFile.txt]
> hashFoundList.txt

2 wc -l hashFoundList.txt
3 wc -l fileListSha1Sum.txt
4 paste -d ’;’ fileListSha1Sum.txt hashFoundList.txt

> nsrlFoundHashes.txt

Table 35: Execute hfind and check if same amount of lines was returned and combine
files.

file chunks. After that I used the created nsrlFoundHashes.txt file to filter only those
files, which were found in the NSRL dataset, and executed hashdb with the path of each
file. The command sed ’s/ /\\/g’ was necessary to replace spaces in the paths with "\",
otherwise an error will occur, because the path is not complete.
After the process is finished I got a database wih all sub-file hashes. For the last step I
prepared a semicolon-seperated datafile with the information of the nsrlFoundHashes.txt
file and extracted information from the files in the image. I used the tool stat to extract:

7

3. Implementation and methods

Command

1 hashdb create -b [blocksize] [HashDB directory]
2 cut -c 43- nsrlFoundHashes.txt | grep ’;1’ |

cut -d ’;’ -f 1 | sed ’s/ /\\ /g’ |
xargs -L1 hashdb ingest -s
[blocksize] [HashDB directory]

Table 36: Set up HashDB datbase and ingest file chunks.

• Total size in bytes (%s)

• The size in bytes of each block (%B)

• Number of blocks allocated (%b)

• File name (%n) to check if the extracted information is from the desired file

Also with the last command I inserted the column names at the beginning of the semicolon-
sperated datafile.
Besides the file data, I also extracted the hash distribution data of the hashdb database

Command

1 sed ’s/ /\;/g’ nsrlFoundHashes.txt |
sed ’s/ /\\ /g’ > FileListPart1.csv

2 cut -d ’;’ -f 2 FileListPart1.csv |
xargs stat -c ’%s;%B;%b;%n’ > FileListPart2.csv

3 paste -d ’;’ FileListPart1.csv FileListPart2.csv
> FileListComplete.csv

4 echo ’SHA1HashSum;BashPath;NSRLFound;
FileSizeByte;BlockSizeFilesystem;UsedBlocks;Path’ |
cat - FileListComplete.csv > temp
&& mv temp FileListComplete.csv

Table 37: Prepare semicolon-seperated datafile.

with the follwing command.

Command

1 hashdb histogram [HashDB directory]|

Table 38: Print HashDB database hash distribution.

8

3.1. Obstacles

The generated HashDB databases are provided in compressed tar format. The full list
can be found in the appendix.

3.1 Obstacles

For the first attempt, I used the tool fiwalk to extract the metadata information of the
given image.

Command

1 fiwalk -Xfiwalkout.xml -I [raw path]

Table 39: Create fiwalk Extensible Markup Language (XML) file output, without NTFS
system files.

The problem was, that fiwalk also extracted the metadata information of all directories
in the given image, so it would distort the result of the analysis afterwards. An example
is showned in 310.

Fiwalk output

1 <fileobject>
...

2 <filename>$Extend/$RmMetadata/.</filename>
...

3 <filesize>336</filesize>
...

4 <hashdigest type=’md5’>
dd269177af94f4d25351e54e519b1468

</hashdigest>
5 <hashdigest type=’sha1’>

a5d4b376d8d3c1945520614b9d5a20cb84d5082e
</hashdigest>
...

6 </fileobject>

Table 310: Fiwalk output directory example. Filesize in bytes

Important for this project was the extraction of known files, found in the NSRL dataset,
so I had to change my approach and startet mounting the image and generated a list of
all files within the given image.

9

3. Implementation and methods

Additionally I first used the tool hfind exclusively with the command -f, which takes a
file of hashes and searches the NSRL dataset for every given hash in the file. For each
found hash hfind will output all matched files. See 311.

Hfind output

1 hfind NSRL_DVD/RDS_255_modern/NSRLFile.txt
"f50991f041c04514d3a3610c2593f694a2fbc7e5"

2 2221
3 2231
4 FL_wizardProviderInfo_ascx_102277

_____A64.3643236F_FC70_11D3_A536_0090278A1BB8
5 FL_wizardProviderInfo_ascx_102277_____

I64.3643236F_FC70_11D3_A536_0090278A1BB8
6 FL_wizardProviderInfo_ascx_102277

_____X86.3643236F_FC70_11D3_A536_0090278A1BB8
7 wizardProviderInfo.ascx
8 wizardproviderinfo.ascx
9 wizardproviderinfo_ascx_amd64

10 wizardproviderinfo_ascx_x86

Table 311: Hfind output example - shorten

For further processing, I needed just an indicator if a file was found or not, so I used
hfind with the command -q as above mentioned in Implementation and methods.
I startet working with the image of Windows 7. After the first verfication of the output
data I figured out, that over 50% of the files wasn’t found in the NSRL dataset but I
was expecting, that 75-80% should be found within the dataset. I revised my approach
afterwards and used it in the final version of this project.

The next obstacle affected hashdb. During my work with hashdb I encountered a
compiling problem. Arch Linux is a rolling release distribution, which makes full system
updates very easy and keeps the operational system up-to-date. Since an update hashdb
couldn’t compile any more and my first examination of this error ended withoutresult,
therefore I raised an issue at Github 4, which was answered by Simson Garfinkel 5, who
implemented bulk_extractor and does research in the field of digital forensics. His work
on hashdb and hash-bases carving provided the foundation for this project.
After some conversation, there was unfortunately still no solution for my problem. In
the meantime I examined the problem on my own and figured out, that with one system
update OpenSSL was updated from version 1.0 to version 1.1.0 and hashdb is using the

4https://github.com/NPS-DEEP/hashdb/issues/6
5https://simson.net

10

https://github.com/NPS-DEEP/hashdb/issues/6
https://simson.net

3.1. Obstacles

function SSL_library_init which was now deprecated 6 and replaced with the function
OPENSSL_init_ssl 7.
To get hashdb with OpenSSL version 1.1.0, I had to replace the function in the configura-
tion file of the installation 8 to:

configure.ac

206 AC_CHECK_LIB([ssl],[OPENSSL_init_ssl],
[],[AC_MSG_ERROR([Could not find ssl library])])

Table 312: HashDB configure.ac file line 206

My solution to this issue is only fixing the problem with OpenSSL version 1.1.0. When
I provided my solution to Github Mr. Garfinkel, he also pointed out, that hashdb won‘
t work with OpenSSL version 1.0, but shortly after he provided me a solution for both
versions.

6https://www.openssl.org/docs/man1.1.0/ssl/SSL_library_init.html
7https://www.openssl.org/docs/man1.1.0/ssl/OPENSSL_init_ssl.html
8https://github.com/NPS-DEEP/hashdb/blob/master/configure.ac#L206

11

https://www.openssl.org/docs/man1.1.0/ssl/SSL_library_init.html
https://www.openssl.org/docs/man1.1.0/ssl/OPENSSL_init_ssl.html
https://github.com/NPS-DEEP/hashdb/blob/master/configure.ac#L206

CHAPTER 4
Data analysis

The datasets, graphics and Tableau workbook can be downloaded under following link
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/Graphics+and+Data.7z

The first graphic shows how many files where found in the NSRL dataset. With 81.592
files Windows 10 has more files than Windows 7 (66.481) or Windows Server 2016
(68756) and with 98% the highest found rate of all other analyzed operational systems.

Figure 41: OS files found in NSRL

13

https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/Graphics+and+Data.7z

4. Data analysis

The next three graphics show the file sizes, clustered by 4KiB, 8KiB, 16KiB,
32KiB, 64KiB, 128KiB, 256KiB and greater than 256KiB and divide them by
NSRL found status. Windows 7 and Windows Server 2016 has a simliar
distribution of files. It is noticable that Windows 10 has more files which
are less or equal 4KiB in size, than Windows 7 or Windows Server 2016.

Figure 42: Windows 7 size of files clustered

Figure 43: Windows 10 size of files clustered

Figure 44: Windows Server 2016 size of files clustered

14

Additionally I evaluated how often file hashes occured overall in the given images for
all hashes, which were found in the NSRL dataset. For example, in Windows 7 16.838
Hashes were distinct, so each hash value was unique, 15.689 Hashed were found twice and
2.906 Hashes occured three times. Windows 7 and Windows 10 has much more hashes
which occured twice then Windows Server 2016.

Figure 45: Windows 7 Hash Occurence for NSRL found files

15

4. Data analysis

Figure 46: Windows 10 Hash Occurence for NSRL found files

Figure 47: Windows Server 2016 Hash Occurence for NSRL found files

16

At least I added the output of the hashdb histogram. I splited the graphics into the
used blocksizes 4k, 8k, 16k, 32k, 64k and 128k. A trivial fact can be seen in all three
operational systems: The higher the blocksize is chosen for sub-file hashing, the lesser
duplicate hashes occur, because lesser hashes will be produced. All graphics contains
only the top 22 duplicates.

Series of 4k blocksize.

Figure 48: Windows 7 HashDB Histogram 4k blocksize

17

4. Data analysis

Figure 49: Windows 10 HashDB Histogram 4k blocksize

Figure 410: Windows Server 2016 HashDB Histogram 4k blocksize

18

Series of 8k blocksize.

Figure 411: Windows 7 HashDB Histogram 8k blocksize

Figure 412: Windows 10 HashDB Histogram 8k blocksize
19

4. Data analysis

Figure 413: Windows Server 2016 HashDB Histogram 8k blocksize
Series of 16k blocksize.

Figure 414: Windows 7 HashDB Histogram 16k blocksize

20

Figure 415: Windows 10 HashDB Histogram 16k blocksize

Figure 416: Windows Server 2016 HashDB Histogram 16k blocksize

21

4. Data analysis

Series of 32k blocksize.

Figure 417: Windows 7 HashDB Histogram 32k blocksize

Figure 418: Windows 10 HashDB Histogram 32k blocksize

22

Figure 419: Windows Server 2016 HashDB Histogram 32k blocksize

23

4. Data analysis

Series of 64k blocksize.

Figure 420: Windows 7 HashDB Histogram 64k blocksize

Figure 421: Windows 10 HashDB Histogram 64k blocksize

24

Figure 422: Windows Server 2016 HashDB Histogram 64k blocksize
Series of 128k blocksize.

Figure 423: Windows 7 HashDB Histogram 128k blocksize

25

4. Data analysis

Figure 424: Windows 10 HashDB Histogram 128k blocksize

Figure 425: Windows Server 2016 HashDB Histogram 128k blocksize

26

CHAPTER 5
Conclusion

First of all, using Windows, as operational system as base for this work, has the most
impact on forensic analysis, due to the distribution of Windows and especially Windows
7 at the moment. Surely the process can be used on all known operational systems, but I
would prefere to then use only files, which are also included in the NSRL dataset. To
the question, if enough files are found in the NSRL dataset, I expected, that at least
2/3 of all files are also included in the NSRL dataset. As seen in Figure 4.1 there are
even more then enough files for all three operational systems and it would fasten the
analysis of a forensic image, which includes one of the used operational systems. During
my work on the first image, I minimized the steps as far as I could, seen in the chapter
"Implementation and methods". When I was preparing the data for the last 2 images,
the prepared statements has fasten up the work immense. Still, I had some checks to do
between the checks, especially for preparing the CSV files, but creating a script in bash,
or using the described process in a Python module, would help to automate the whole
procedure.

27

CHAPTER 6
Discussion

First of all I learned that the open-source tools like hashdb or the tools provided in
sleuthkit are very powerful for forensic analysis, or preparing data for analysis, but in my
opinion most of the documentary was quite minimalistic. It requires much time to test
the tools and find some walktroughs in addition to the documentation which supported me.

I quickly realized, that the build-in unix tools form the best base enviroment around the
tools itself, to prepare the data for hashdb, which also makes the whole project easier to
set up on an own unix enviroment.
The compiling problem, which I had with hashdb not only gave me the opportunity to
talk to Simson Garfinkel, it also had a learning effect since I examined some of the source
code of hashdb.

The outcome of the data analysis were in some points unexpected, like the distribution
of the found files in the NSRL dataset. I was expecting, that around 75-80% of the
files within the operational systems were also in the NSRL dataset, but nearly all files
within Windows 10 where found. On the other hand, lesser files from Windows 7, the
older operational system, were found in the NSRL dataset, but still the percentage of the
found files where in the expected range. Also, since the NSRL dataset is using the SHA1
hash algorithm and the majority of the files has a size less then 4KiB, I was expecting
more hashes which were found 3 or more times.

29

CHAPTER 7
Future work

Here I will mention some points, which can be done afterwards, based on this project.
Primary, as mentioned, a script for preparing the HashDB databases could automate
the whole procedure, for faster creating HashDB databases. I also think, that a bigger
store of prepared HashDB databases can be build and provided for forensic analysis, like
in the project Peekatorrent. For that, more operational systems should be taken and
also maybe regular updates of existing HashDBs could be provided, because the NSRL
dataset will be updated regulary and maybe more files could be found in the dataset, so
that the HashDB databases contain more data.
Further it should be extended for operational devices used on smartphones, like android,
to support mobile device forensic analysis, but for that, the NSRL dataset should be
tested against an image of a smartphone, if enough files are included.
Since all the questions of this work has been answered positive, I would recommend to
create hashdb databases of as many modern operational systems as possible and provide
the databases to all forensic teams, to fasten up their work. Since the update of the
databases could be too much for one organisation, I would recommend to put this project
up as an open-source project, so the work can be distributed to many developers, who
are willing to participate to this work.

31

CHAPTER 8
Used tools

Enclosed a list of the tools, which were used for this project.

• Arch Linux - linux 4.12.8-2

• hashdb 3.l.0

• fdisk from util-linux 2.30.1

• find 4.6.0

• cut 8.27

• paste 8.27

• sed 4.4

• xargs 4.6.0

• hfind from sleuthkit 4.4.2-1

• fiwalk from sleuthkit 4.4.2-1

• qemu-img 2.9.0

• Oracle VirtualBox GUI 5.1.26 r117224

• Graph visualization Tableau Desktop Professional 10.3.2 1

1(https://www.tableau.com/)

33

https://www.tableau.com/

Appendix

HashDB Name Hashes tar Size Download Link
Win7_4096B_HashDB.tar 1375280 241MB Win7_4096B_HashDB.tar
Win7_8192B_HashDB.tar 698672 159MB Win7_8192B_HashDB.tar
Win7_16384B_HashDB.tar 360101 111MB Win7_16384B_HashDB.tar
Win7_32768B_HashDB.tar 191429 87MB Win7_32768B_HashDB.ta
Win7_65536B_HashDB.tar 107752 83MB Win7_65536B_HashDB.tar
Win7_131072B_HashDB.tar 66393 70MB Win7_131072B_HashDB.tar
Win10_4096B_HashDB.tar 1352262 305MB Win10_4096B_HashDB.tar
Win10_8192B_HashDB.tar 695427 209MB Win10_8192B_HashDB.tar
Win10_16384B_HashDB.tar 366347 161MB Win10_16384B_HashDB.tar
Win10_32768B_HashDB.tar 203369 137MB Win10_32768B_HashDB.tar
Win10_65536B_HashDB.tar 122382 125MB Win10_65536B_HashDB.tar
Win10_131072B_HashDB.tar 82325 125MB Win10_131072B_HashDB.tar
WinServer2016_4096B_HashDB.tar 948989 158MB WinServer2016_4096B_HashDB.tar
WinServer2016_8192B_HashDB.tar 485828 110MB WinServer2016_8192B_HashDB.tar
WinServer2016_16384B_HashDB.tar 253456 86MB WinServer2016_16384B_HashDB.tar
WinServer2016_32768B_HashDB.tar 138866 74MB WinServer2016_32768B_HashDB.tar
WinServer2016_65536B_HashDB.tar 82129 74MB WinServer2016_65536B_HashDB.tar
WinServer2016_131072B_HashDB.tar 53974 68MB WinServer2016_131072B_HashDB.tar

35

https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/Win7_4096B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/Win7_8192B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/Win7_16384B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/Win7_32768B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/Win7_65536B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/Win7_131072B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/Win10_4096B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/Win10_8192B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/Win10_16384B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/Win10_32768B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/Win10_65536B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/Win10_131072B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/WinServer2016_4096B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/WinServer2016_8192B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/WinServer2016_16384B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/WinServer2016_32768B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/WinServer2016_65536B_HashDB.tar
https://s3-eu-west-1.amazonaws.com/dtichy-bachelorthesis/WinServer2016_131072B_HashDB.tar

List of Figures

41 OS files found in NSRL . 13
42 Windows 7 size of files clustered . 14
43 Windows 10 size of files clustered . 14
44 Windows Server 2016 size of files clustered 14
45 Windows 7 Hash Occurence for NSRL found files 15
46 Windows 10 Hash Occurence for NSRL found files 16
47 Windows Server 2016 Hash Occurence for NSRL found files 16
48 Windows 7 HashDB Histogram 4k blocksize 17
49 Windows 10 HashDB Histogram 4k blocksize 18
410 Windows Server 2016 HashDB Histogram 4k blocksize 18
411 Windows 7 HashDB Histogram 8k blocksize 19
412 Windows 10 HashDB Histogram 8k blocksize 19
413 Windows Server 2016 HashDB Histogram 8k blocksize 20
414 Windows 7 HashDB Histogram 16k blocksize 20
415 Windows 10 HashDB Histogram 16k blocksize 21
416 Windows Server 2016 HashDB Histogram 16k blocksize 21
417 Windows 7 HashDB Histogram 32k blocksize 22
418 Windows 10 HashDB Histogram 32k blocksize 22
419 Windows Server 2016 HashDB Histogram 32k blocksize 23
420 Windows 7 HashDB Histogram 64k blocksize 24
421 Windows 10 HashDB Histogram 64k blocksize 24
422 Windows Server 2016 HashDB Histogram 64k blocksize 25
423 Windows 7 HashDB Histogram 128k blocksize 25
424 Windows 10 HashDB Histogram 128k blocksize 26
425 Windows Server 2016 HashDB Histogram 128k blocksize 26

36

List of Tables

31 Convert given VDI image to RAW image. 6
32 Mount given RAW. image and extract all file paths. 6
33 Output of fdisk. 7
34 Create index for hfind. 7
35 Execute hfind and check if same amount of lines was returned and combine

files. 7
36 Set up HashDB datbase and ingest file chunks. 8
37 Prepare semicolon-seperated datafile. 8
38 Print HashDB database hash distribution. 8
39 Create fiwalk XML file output, without NTFS system files. 9
310 Fiwalk output directory example. Filesize in bytes 9
311 Hfind output example - shorten . 10
312 HashDB configure.ac file line 206 . 11

37

Bibliography

[Car05] Brian Carrier. File System Forensic Analysis. Addison-Wesley Professional,
2005.

[SLGa14] Michael McCarrin b Simson L. Garfinkel a. Hash-based carving: Searching
media for complete files and file fragments with sector hashing and hashdb.
Digital Investigations, 14(7):95–105, 2014.

[SN16] Edgar Weippl Sebastian Neuner, Martin Schmiedecker. Peekatorrent: Leverag-
ing p2p hash values for digital forensics. Digital Investigations, 18(7):149–156,
2016.

39

	Abstract
	Contents
	Background
	Preanalysis
	Implementation and methods
	Obstacles

	Data analysis
	Conclusion
	Discussion
	Future work
	Used tools
	Appendix
	List of Figures
	List of Tables
	Bibliography

