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Kurzfassung

S. Nakamoto präsentierte 2008 eine Peer-to-Peer Version von elektronischem Geld: Bitcoin.
Dieses System ermöglicht den direkten Zahlungsverkehr zwischen verschiedenen Personen
und Organisationen, ohne Finanzdienstleister oder andere zu-vertrauende Dritte als
Intermediäre einsetzen zu müssen. Im Zuge dessen entwickelte er die erste praktische
Lösung für das Problem der Konsensfindung innerhalb eines dynamischen Netzwerks
von potentiell anonymen Knoten, ohne die Notwendigkeit diese zuvor festzulegen. Dieses
Ergebnis wird auf Basis des Konzepts von Proof-of-Work erzielt, das auf Grund der hohen
Anforderungen für die benötigten Berechnungen zu einem enormen Energieverbrauch
führt.
Unter Verwendung des alternativen Prinzips von Proof-of-Stake versuchen neue Proto-
kolle Nakamoto’s Ansatz weiterzuentwickeln. Eine grundlegende Voraussetzung für die
Sicherheit dieser Protokolle ist eine vertrauenswürdige (d. h. öffentlich-verifizierbare und
manipulationssichere) Quelle von Zufallszahlen. Deren Erzeugung stellt ein komplexes
Problem dar, da diese in einem dezentralen Netzwerk unter dem potentiellen Einfluss von
Angreifern durchgeführt wird. Kürzlich veröffentlichte Forschungsergebnisse und Projekte
aus der Wirtschaft beschäftigen sich mit diesem Problem und stellen sogenannte Random
Beacon Protokolle vor, welche die erforderlichen Zufallszahlen in regelmäßigen Intervallen
generieren.
Diese Diplomarbeit beschäftigt sich intensiv mit den Herausforderungen der Entwick-
lung von Random Beacon Protokollen und liefert den ersten detaillierten Vergleich. Es
wird gezeigt, dass Publicly-Verfiable Secret Sharing (PVSS) in vielen dieser Ansätze als
gemeinsame Komponente dient. Weiters präsentiert diese Arbeit ein neu entwickeltes
Protokoll, das ebenfalls PVSS verwendet und die Skalierbarkeit im Vergleich zu den
bereits existierenden deutlich verbessert. Da dieser neue Ansatz nur eine PVSS-Instanz
pro Runde benötigt, verringert sich der Kommunikationsaufwand von O(n3) auf O(n2).
Diese Verbesserung wird erzielt, ohne auf wichtige Protokolleigenschaften, wie öffent-
liche Verifizierbarkeit, Manipulationssicherheit oder Nichtvorhersagbarkeit, verzichten
zu müssen. Darüber hinaus erfolgt eine Optimierung der erarbeiteten Lösung durch
die Entwicklung einer Protokollerweiterung, die die Interaktion zwischen den Knoten
weiter reduziert und einen nahezu optimalen Kommunikationsaufwand von O(nc) erreicht.
Dennoch stellt das erweiterte Protokoll mit sehr großer Wahrscheinlichkeit sicher, dass
Zufallszahlen kontinuierlich erzeugt werden können und diese weder manipulierbar noch
vorhersagbar sind.
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Abstract

In 2008, S. Nakamoto presented Bitcoin as a peer-to-peer version of electronic cash – a
system allowing direct payments between participants without the need for a financial
institution or trusted third party. Thereby, he proposed the first practical solution for the
problem of reaching consensus in a dynamic set of potentially anonymous participants
without a prior agreement on this set. Bitcoin achieves this advancement at the cost of
high computational requirements for Proof-of-Work, leading to vast amounts of electricity
being consumed.

Recently, new protocols, using Proof-of-Stake as a fundamental principle, have tried to
improve upon Nakamoto’s solution. These protocols require a trustworthy source of
randomness, i.e. publicly-verifiable and bias-resistant randomness, to maintain desirable
security guarantees. However, obtaining trustworthy randomness, in a highly decentralized
network and under potentially adversarial conditions, is by itself a challenging task. Recent
academic research as well as projects from the industry try to address this problem by
designing random beacon protocols, which produce the required random values in regular
intervals.

In this thesis, we highlight the design challenges of random beacon protocols as well
as provide the first in-depth review and comparison of state-of-the-art protocols. We
identify public-verifiable secret sharing (PVSS) as a common building block and develop
a new protocol using this cryptographic primitive. Our PVSS-based random beacon
protocol greatly improves upon the scalability of existing approaches. Communication
complexity is reduced from O(n3) to O(n2), as our solution only requires a single PVSS
instance per round. Our protocol achieves this advancement while ensuring important
protocol characteristics such as public-verifiability, bias-resistance and unpredictability.
Additionally, we present an optimized solution as a protocol extension, which further
reduces the interaction between network nodes and achieves a near optimal communication
complexity of O(nc). This improvement is accomplished while still retaining liveness, bias-
resistance and unpredictability of the random beacon values with very high probability.
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CHAPTER 1
Introduction

With the introduction of Bitcoin [1] in 2008, S. Nakamoto laid out the foundation for
a decentralized peer-to-peer currency system. The underlying blockchain technology
opened a wide range of possible applications far beyond the use as a currency [2]. As of
August 2017, the website coinmmarketcap.com [3] lists over a thousand related projects.

Consensus algorithms are fundamental parts of Bitcoin and related technologies to
synchronize the nodes in such decentralized networks. In traditional distributed systems,
the consensus algorithm often only considers the failure of nodes (crash fault tolerance),
whereas Bitcoin’s consensus algorithm is able to withstand a much stronger failure model,
where so-called byzantine nodes actively try to manipulate the network. Byzantine fault
tolerant algorithms have previously become infamous for their limited scalability [4].
Nakamoto was first to address those issues by introducing a new consensus algorithm,
which relies on the concept of Proof-of-Work — both revolutionary and heavily criticized.

1.1 Proof-of-Work

Proof-of-Work was initially considered as a protection mechanism against junk mail
by Dwork and Naor in 1992 [5]. In the context of Bitcoin, Proof-of-Work depends
on continuously performed computations in the decentralized network [1]. Network
participants, called miners, solve computationally intensive cryptographic puzzles as
part of transaction processing. It is a miner’s task to verify transactions according to
the protocol rules and group sets of unconfirmed transactions into blocks. These blocks
include a reference to a previous block, forming a chain of blocks, which serves as a
history of transactions – a distributed ledger or blockchain. As soon as a miner finds a
solution to a puzzle, it gains the right to publish the corresponding block, and receives an
economic reward for the work done. The validity of blocks, including the puzzle solution,
can independently be verified by other participants in the network.

1



1. Introduction

It is actually the chaining of Proofs-of-Work, which establishes an ordering of events, that
together with the “longest chain rule”1 leads to eventual agreement on the blockchain.
Proof-of-Work in this case replaces the necessity for a prior agreement on the set of
participants and, hence, allows for dynamic membership and also potential anonymity.

The protocol is constructed in a way that automatically regulates the difficulty of the
puzzles. Considering the example of Bitcoin, this ensures that a new solution is found
approximately every 10 minutes. As miners are economically rewarded for finding puzzles
solutions, the increasing value of cryptocurrencies leads to a rise in mining activity. As a
result, the involved parties invest vast amounts of money in special hardware equipment
to solve the underlying cryptographic puzzles. Consequently, the difficulty of the puzzles
and the electric power consumed increases to very high levels. As of August 2017,
approximately 7 · 1018 computations are performed every second for Bitcoin alone [6, 7].
In 2014, a study [8] already estimated the power consumption of Bitcoin mining matching
the national energy requirements of countries like Ireland. Bitcoin’s current estimated
annual electricity consumption exceeded 16 TWh in August 2017 [9].

1.2 Proof-of-Stake
To address the issue of very high resource demands in Proof-of-Work based blockchains
as well as other concerns such as scalability, latency, throughput and centralization risks
[10], alternatives to Proof-of-Work are proposed. In this thesis, we focus on one of the
most promising ones called Proof-of-Stake, and refer the reader to, for example, [11] for
a more general discussion. Proof-of-Stake aims to establish similar security guarantees
as Proof-of-Work, but in comparison uses only a negligible amount of computational
resources.

As a key difference, Proof-of-Stake does not rely on solving cryptographic puzzles as
part of its consensus algorithm. Instead of consuming electricity as a physical resource,
virtual resources in form of digital coins are used. Leaders, which produce new blocks
in Proof-of-Stake based systems, are then randomly selected based on the amount of
coins they stake. Unfortunately, obtaining and agreeing on the involved randomness
is a difficult problem by itself. In fact, Kiayias et al. identified leader election as a
fundamental problem of Proof-of-Stake based protocols, as any introduced entropy is
subject to potential manipulation by an adversary [12].

1.3 Randomness
This finding leads to the main topic of this thesis: Generating Publicly-Verifiable and
Bias-Resistant Randomness in Decentralized Systems.2 In 2016 and 2017, a substantial
amount of research towards solving open problems in the area has been published. In

1 The longest chain rules describes the fact that miners should always extend the longest chain of
blocks, i.e. the chain containing the most Proof-of-Work.

2(verifiable) randomness for short

2



1.3. Randomness

chapter 4, we present important proposals in the space including Ouroboros, Dfinity,
Algorand, Scrape and RandHerd in detail. Following M. Rabin, who introduced the
term beacon in [13], we refer to these approaches as random beacon protocols. Dfinity
[14] builds a distributed verifiable random function as the key ingredient for reaching
consensus among the network nodes. To the best of our knowledge, they are the first
to utilize BLS signatures for that purpose. BLS signatures, introduced by D. Boneh, B.
Lynn and H. Shacham, provide signature uniqueness as well as support for signature
aggregation [15, 16]. Dfinity combines both of these key properties to obtain a random
beacon protocol. Algorand [17], an alternative approached proposed by J. Chen and
S. Micali, builds a decentralized ledger by combining (i) a randomness beacon based
on unique signatures and hash functions with (ii) a new byzantine agreement protocol.
Other protocols such as Ouroboros [12] and RandHerd [18] use a combination of publicly-
verifiable secret sharing (PVSS) and other cryptographic primitives to obtain verifiable
randomness in a decentralized environment. Similar to Dfinity and Algorand, the agreed
randomness is then used as the basis for the respective consensus algorithm. Scrape
[19] introduces an optimized variant of Schoenmakers’ secret sharing protocol [20], an
important building block for the Ouroboros and RandHerd protocols.

This research already establishes the key role of verifiable randomness as a fundamental
building block for the construction of Proof-of-Stake based blockchains. The approaches
aim to mitigate some of the most critical problems of Proof-of-Work based blockchains
as well as the limited scalability of traditional byzantine fault tolerant protocol.

In addition to the scenario of leader selection and establishing consensus in Proof-of-Stake
based distributed ledgers, publicly-verifiable randomness is useful in a variety of other
scenarios. One prominent example is the provision of randomness in so-called Smart
Contracts. Simply speaking, Smart Contracts are similar to normal computer programs,
executed by the nodes in a decentralized network. Due to the deterministic nature of the
execution environment, using randomness in Smart Contracts is currently not possible
directly [21]. Instead, Smart Contracts, which require unpredictable, bias-resistant
randomness, need to rely on (i) insecure sources of randomness such as the hash of block
headers, which can be manipulated by miners, or (ii) trusted third parties such as the
NIST random beacon service [21, 22]. Here, a decentralized publicly-verifiable random
beacon could be more efficient and provide better security against manipulation than
existing approaches.

Other use case scenarios include gambling and lottery services, publicly-auditable selec-
tions (e.g. soccer World cup draws) or the verifiable assignment of a limited number of
resources (e.g. places in a kindergarten or the selection of one of two equally qualified
job applicants). Syta et al. [18] list additional use cases for publicly-verifiable random-
ness including Tor hidden services, generation of elliptic curve parameters, byzantine
consensus and electronic voting. Further use case scenarios and applications are outlined,
for example, by Bonneau et al. in [23].
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1. Introduction

1.4 Aim of the Work
Generating public-verifiable randomness in decentralized systems is a difficult problem.
Solutions have to solve complex design challenges in order to achieve desirable properties
such as unpredictability, bias-resistance, verifiability and liveness and yet be scalable.
While there are already proposed approaches to address open questions, very little
research on comparison and evaluation of these new proposals has been performed. We
identify additional desirable protocol characteristics and provide an overview of existing
approaches. Further, we analyse and compare these protocols and show key advantages,
drawbacks and open questions.

Based on the gathered insights obtained by this study, we present an alternative solution
and possible protocol extensions in chapters 6 and 7. We focus on the properties of
scalability and bias-resistance and make use of well-established cryptographic primitives,
such as cryptographic hash functions, digital signatures and publicly-verifiable secret
sharing, for our protocol. In addition, we introduce a simplified protocol to highlight the
underlying concepts.

1.5 Structure
The remainder of the thesis is structured as follows:

Chapter 2 describes the research issues covered in this thesis as well as the methodological
approach.

We further give background information on blockchain-based systems, using the examples
of Bitcoin and Ethereum, discuss the concepts of Proof-of-Work and Proof-of-Stake,
and introduce useful cryptographic primitives required for generating publicly-verifiable
randomness in chapter 3.

Chapter 4 illustrates the difficulty of the problem by presenting basic approaches, which
fail to provide a solution in the general case. Additionally, state-of-the-art proposals for
obtaining randomness in decentralized systems are outlined and discussed in this chapter.

To highlight the main idea of our proposed random beacon protocol, we present a
simplified construction based on the concept of hashchains in chapter 5.

In chapter 6, our main contribution – a new random beacon protocol based on publicly-
verifiable secret sharing – is presented and evaluated.

We enhance our protocol by describing protocol extensions in chapter 7.

In chapter 8, our solution is discussed and compared to existing state-of-the-art protocols.
We further outline open questions and give suggestions for future research.

Finally, we summarize and conclude this thesis in chapter 9.
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CHAPTER 2
Research Issues and Approach

The generation of high quality randomness in a local and trusted environment is a well
understood problem already considered by, for example, M. Blum and S. Micali in the
1980s [24]. In this case, many practical solutions exist. However, when considering decen-
tralized systems, in particular in the context of blockchains, the problem of generating
public-verifiable and bias-resistant randomness poses several challenging requirements.

To show the fundamental differences between a trusted local environment and a potentially
untrusted, decentralized environment, we give the following illustrative example:

• trusted / local environment: Alice rolls a dice and the result shows a six. Neglecting
the fact that physical dice have imperfections, Alice can be sure that the outcome
she rolled was indeed selected uniformly at random from all possible outcomes.

• untrusted / decentralized environment: Alice is on the phone with a stranger. Alice
rolls a die, the result shows a six and Alice tells the stranger that she rolled a six.
How can the stranger ever be sure that Alice indeed rolled a six?

In the second case, the stranger could, of course, just trust Alice – accepting all the
potential problems that might arise. The much more interesting case is however how to
verify that she indeed rolled a six.

The problem, as well as a similar example using coin tossing, was already considered
by M. Blum back in the 1980s [25]. Due to the rise of blockchain-based technology,
the problem of generating verifiable randomness in decentralized systems was, however,
recently been reconsidered in academic work [12, 17, 18, 19] as well as practical solutions
[14].
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2. Research Issues and Approach

2.1 Research Issues
The constructions for generating verifiable randomness in decentralized systems are often
described as part of a larger system and address the common problem in quite different
ways. The protocols rely on different threat and communication models, use other
cryptographic primitives and / or achieve distinct properties. Therefore, the evaluation
and comparison of existing protocols is a difficult task. In this thesis, we address the issue
of systematizing the current progress on the problem of generating verifiable randomness
in decentralized environments, thereby giving an in-depth comparison of existing proposals
as well as developing new approaches towards an optimal solution.

In the ideal case, solutions manage to meet all desirable protocol characteristics listed
below. To which extent all of theses properties can be achieved at the same time is
still an open problem. Different desirable properties for random beacon protocols in
decentralized environments have been identified by Bonneau et al. [23] and Syta et al.
[18]:

(1) Availability / Liveness: Any single participant, or a colluding adversary (e.g. a
set of malicious participants controlling up to 33% of the nodes in the network)
should not be able to prevent progress.

(2) Unpredictability: Participants and attackers should not be able to predict or
precompute future random beacon values.

(3) Bias-Resistance: Any single participant, or colluding adversary, should not be
able to influence future random beacon values.

(4) Public-Verifiability: Third parties, i.e. participants which are not involved in
producing the sequence of random numbers, should also be able to verify generated
values. As soon as a new random beacon value becomes available, all parties can
verify the correctness of the new value based on public information only.

As a result of our extensive study on the current state-of-the-art, we further suggest that
practical solutions should achieve good

(5) Scalability in terms of the number of supported participants as well as

(6) Efficiency considering the number of messages, the amount of data transmitted
and the required computational resources.

Additionally, the security of underlying cryptographic primitives and implemen-
tation complexity are important properties of random beacon protocols.
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2.2. Methodology and Approach

2.2 Methodology and Approach
In order to address the stated research issues, the following four part methodological
approach is used:

• Literature review: This includes an extensive examination of the current state-
of-the-art. To aid the comparison and discussion of potential problems, we give an
overview of those protocols. An additional focus is placed on important underlying
concepts, which are and can be used as building blocks for generating verifiable
randomness in decentralized systems. These concepts include cryptographic hash
functions, digital signatures and (publicly-verifiable) secret sharing.

• Requirement analysis and evaluation of existing approaches: Based on
the insights gained during the literature review, key requirements as well as desirable
properties for random beacon protocols are identified. Existing approaches are
evaluated in respect to those requirements. We further examine to which extent
the desired characteristics are met by those protocols.

• Development of protocol improvements: As the third part, we design
protocol improvements. We use the insights gained during the literature review to
address potential problems of current approaches. Further, we develop an improved
solution for a decentralized random beacon protocol using a combination of existing
and well-established cryptographic primitives.

• Evaluation and comparison: The proposed solution is evaluated, its key
properties are identified and the design is compared to existing approaches. For
the evaluation, desirable protocol properties as outlined in, for example, [18] and
[23] as well as additional characteristics identified by the requirement analysis are
considered.
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CHAPTER 3
Background

To describe the context of this work, we provide an overview of blockchain-based tech-
nologies, as well as their key ideas and properties in section 3.1. We further outline the
two most established blockchain-based systems, i.e. Bitcoin and Ethereum, in sections
3.2 and 3.3.

In addition, this chapter discusses cryptographic primitives, which are suitable as building
blocks for random beacon protocols and are required for the understanding of state-of-
the-art protocols. Section 3.4 describes cryptographic hash functions, one of the most
used primitives in modern blockchains and random beacon protocols. We introduce the
general principles and important properties of cryptographic hash functions as well as
the Random Oracle Model – a mathematical abstraction of cryptographic hash functions.

We consider digital signatures schemes in section 3.5, introducing RSA as the most
well known example. We explain and elaborate on the uniqueness property of digital
signatures, which is useful for the construction of verifiable random functions (VRFs) in
section 3.6. Further, unique signature schemes are required for certain random beacon
protocols, e.g. for

• Dfinity [14] (see section 4.2) and

• Algorand [17] (see section 4.3).

In sections 3.7, 3.8 and 3.9, we discuss the topic of (publicly-verifiable) secret sharing. We
first introduce Shamir’s original secret sharing scheme and its properties and discuss why
the additional properties, which are offered by verifiable secret sharing schemes (VSS)
and publicly-verifiable secret sharing schemes (PVSS), are important for the construction
of random beacon protocols.
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3. Background

Lastly, in section 3.9.1, we describe Schoenmakers’ PVSS [20], which is used as a basis
for the following PVSS-based random beacon protocols:

• Ouroboros [12] (see section 4.4)

• RandHound / RandHerd [18] (see section 4.5)

• Scrape [19] (see section 4.6)

Schoenmakers’ PVSS also serves as a fundamental building block for our proposed random
beacon protocol, described in chapter 6.

3.1 Blockchain Fundamentals
Since the introduction of Bitcoin in 2008, the popularity and general awareness of so-called
cryptographic currencies steadily increased. As of August 2017, coinmarketcap.com lists
more than a thousand different systems with a total market capitalization of around
161 billion USD. The largest ten of those account for around 90% of the total market
capitalization [3]. The underlying technology for these cryptographic currencies is most
commonly referred to as blockchain or distributed ledger technology.

Although the dominant use case for blockchains today is digital currency, the technology
is not limited to this scope. Ethereum, one of the largest systems in use today, is a
noticeable counterexample. It serves as an application platform based on the concept of
Smart Contracts in extension to providing a payment system. In addition, M. Swan, for
example, tries to demonstrate potential applications of blockchain-based technology in
various segments including government, health, science, literacy, publishing, economic
development, art and culture [26]. Other use case scenarios, such as public notary services,
proof of existance, decentralized storage as well as applications in the music industry and
field of IoT, are described by Crosby et al. [27].

What is a blockchain?
A blockchain is a term that is arguably associated with “things that are kind of like
Bitcoin”.

Or, more precisely, the term blockchain describes decentralized networks which store an
ever growing list of records. These records, also called transactions, are grouped into
blocks, which are then linked together to a data structure, which is ambiguously also
called blockchain.

In the literature, various different definitions can be found. In the following, we give two
descriptions identified by Judmayer et al. in [28]:

A blockchain, according to the Princeton Definition [29], is defined as a linked
list data structure, that uses hash sums over its elements as pointers to the
respective elements.
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3.1. Blockchain Fundamentals

Colloquially the term blockchain refers to the category of distributed systems
that are built using blockchain/cryptographic currency technologies, e.g.,
hash chains, asymmetric cryptography, game theory, etc.

While there exist a variety of different implementations for blockchains, they share various
characteristics such as integrity, decentralization, the absence of trusted third parties
and immutability.

Integrity A combination of cryptographic primitives serves as the core of blockchains
and ensures the integrity of recorded datasets. Two important building blocks, namely
digital signatures and cryptographic hash functions, are described in sections 3.4 and 3.5.

Cryptographic hash functions are used to establish the links between blocks. When a
new block is append to the blockchain, the new block includes the hash of the previous
block. This ensures that any manipulation of previously recorded data can be detected.

Digital signatures play an important role in proving the validity of each transaction inside
a block. Considering a simple payment scenario where one party wants to transfer funds
to another one, the first party has to authorize such a transaction by digitally signing it.
When a transaction is added into a block, the corresponding signature(s)1 is/are verified.
The transaction is only considered valid if it contains valid signatures for the funds it
wants to spend.

Decentralization Blockchains operate in a decentralized environment. There is no
central point of failure or authority. Based on the concrete setting, two types can be
identified:

(1) permissionless / public blockchains

(2) permissioned / private / consortium blockchains

In a public blockchain system, anyone is free to join the network as a participant. In
this case, there is no requirement for registration. Major blockchain systems such as
Bitcoin, Ethereum and many others fall into this category. In permissioned blockchains,
such as Hyperledger Fabric, participants are required to register themselves. In the case
of Hyperledger Fabric, they acquire identity credentials called enrollment certificates
through certificate authorities [30]. In the permissioned setting, blockchain operators are
in charge of defining access control rules for different types of participants.

1 Depending on the number of inputs for a specific transaction, the inclusion of more than one valid
signature is required.
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Decentralized Systems vs. Distributed Systems To highlight the differences
between decentralized and distributed systems we give the definitions of both terms, as
stated by Troncoso et al. below [31]:

Distributed system: A system with multiple components that have their
behavior coordinated via message passing. These components are usually
spatially separated and communicate using a network, and may be managed
by a single root of trust or authority.

Decentralized system: A distributed system in which multiple authorities
control different components and no single authority is fully trusted by all
others.

No trusted third party Traditional distributed databases share data among nodes in
order to increase, for example, capacity, throughput, availability or latency. The nodes in
such a system are often controlled by a single trusted entity like a cloud service provider.
Blockchains, in contrast, do not impose such trust assumptions. Nodes are operated by
different participants, who do not trust each other. Instead, nodes independently verify
that the other nodes behave according to specified protocol rules and assume that a
majority of participants act honestly.

Immutability In traditional databases, anyone with (physical) access to the data can
change records. In contrast, blockchains ensure that after some data is recorded, no
malicious participant can manipulate the stored data at a later point in time (given
that the general assumptions required by the system model, for example honest majority
of mining power, hold). This property is especially enforced by Proof-of-Work based
blockchains. In section 3.2, we introduce how Bitcoin achieves this property.

3.2 Bitcoin
At its core, Bitcoin [1] is based on a peer-to-peer system, which allows Bitcoin clients
to transfer cryptographic money / tokens (i.e. Bitcoins) between each other. All of
these transfers, so-called transactions, are persisted in a distributed ledger called the
blockchain. Each client can download the full history of transactions and independently
verify that the ledger is indeed constructed according to the Bitcoin protocol rules.

A typical transaction includes source and destination addresses and is created, signed
and sent to the Bitcoin network by the payer / sender. The requirement for transaction
signing via the owners private key ensures that only the owner of the coins can spend
them. The notion of a bank account applied to Bitcoin is somewhat misleading. There
is no central authority calculating and updating a balance for its customers. Instead,
the amount of Bitcoins an individual owns is directly inferred by the sum of tokens in
unspent transactions for which the user controls the corresponding private keys.
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Bitcoin needs to address the so-called double-spending problem. The problem of double-
spending is a direct consequence of the ability to copy digital information. To illustrate
it, we consider the following scenario: Alice constructs and signs a transaction to send
one Bitcoin to Bob. In addition, Alice also creates a transaction to send the same Bitcoin
to Carol. Both transactions get published and Alice was able to spend her Bitcoin twice.
When using a centralized system, the attempt to spend the same Bitcoins twice can
be detected at the time the second transaction is transmitted to the central service. A
possible countermeasure is to simply ignore the second transaction. However, in a highly
decentralized system like Bitcoin, there is no synchronized time between the network
nodes. As a consequence, nodes might disagree on which transaction happened first and
thus should be processed. This is true even though each individual node can decide
on a set of valid transactions. Finding a mechanism for reaching consensus, i.e. which
transactions should be included in which order, in the entire distributed system is the
difficult part. The first large scale solution using the concept of Proof-of-Work was
famously introduced by S. Nakamoto in the original Bitcoin paper [1].

3.2.1 Proof-of-Work

In order to illustrate how the described consensus problem [32] is resolved in Bitcoin, a
more detailed look into the process of adding transaction to the blockchain is required.
This process is called mining. Bitcoin nodes (i.e. miners) collect transactions, verify
them (e.g. they check that the referenced tokens are not already spent in their view
of the blockchain and that the given signatures are valid) and add them to a pool of
unconfirmed transactions. The unconfirmed transactions are combined with additional
information, such as the hash of the previous block header and a nonce value, to form
the next block of the blockchain.

Each block includes the hash of the predecessor block header, which effectively creates
a linked chain. As a consequence, a single change in past block would automatically
require a change in all following blocks in order for them to stay valid.

As a further protocol requirement, the hash value, interpreted as 256 bit number, of a
proposed block needs to be less than a specific target value. The difficulty in finding such
low hash values is a result of the security properties of the used hash function SHA256,
which is considered secure [33]. Finding such a hash value is not feasible in an efficient
manner. All a miner can do to find a low enough hash value is to perform a brute force
search by varying the block’s data, e.g. the nonce field. Depending on the used nonce,
the resulting hash value changes in an unpredictable way. Eventually, a chosen nonce
produces a low enough hash for a block to be published and accepted by the Bitcoin
network.

The following example further illustrates the difficulty of finding such hash values. We
consider the actual hash of block header #482625 mined on Aug. 30, 2017:

000000000000000000d61c4f32930ada2259b55679078fb65f8692e1c7e0c8f0
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Finding such a hash value takes all the miners in the Bitcoin network together 10 minutes
on average. The target value (difficulty) is adjusted periodically to adapt to the generally
increasing computing power of the Bitcoin mining network. As of Aug 2017, the combined
mining power of the Bitcoin network is about 7 · 1018 hashes/second (7,000,000 TH/s)
[6, 7]. While previously mining on CPUs and GPUs could be profitable, nowadays
specialised mining hardware, so-called ASICs, are used.

While it is difficult to find a nonce producing such a small hash value, once one is
found, it can be easily verified that the published block indeed meets the difficulty target.
Furthermore, this verification provides evidence that the miner of the block actually
used a high amount of computational resources in order to find it. The hash serves as a
Proof-of-Work.

Bitcoin addresses the distributed consensus problem in a new, innovative manner. By
using Proof-of-Work, Bitcoin works in a byzantine setting with a dynamic set of potentially
anonymous participants. Each node can independently and without reliance on trust of
a central authority verify all transactions and issued Bitcoins. In fact, “much of the trust
in Bitcoin comes from the fact that it requires no trust at all” [34].

Establishing consensus via Proof-of-Work In the following, we describe how Bit-
coin’s Proof-of-Work approach can be used to establish consensus across the whole Bitcoin
network. Miners individually gather transactions, group them together into blocks and
start searching for a nonce value in order to match the current difficulty target of the
network. It is important to note that blocks created by two miners are most likely
different as they include a different set of transactions, or the transaction ordering does
not match. But according to the Bitcoin protocol, only one block can become the next
block of the blockchain. Each miner has an incentive that it mines this block, because a
reward (currently 12.5 BTC) and transaction fees are paid to the creator of this block.
Consequently, the miners are in a race against each other. Each one is trying to find a
low enough hash value. As soon as a miner finds such a hash, it publishes the block as
fast as possible. Other miners receive the new block, verify it and the race starts again
with the new block added to the end of the blockchain. Conflicts, i.e. two miners finding
blocks at approximately the same time, are eventually resolved by the longest chain rule.
This means that the branch with the most Proof-of-Work in its history is considered to
be the correct one. While it is temporally possible that there is more than one branch
(called a fork), as soon as the next blocks are found a single longest chain forms and
honest nodes will switch to this chain. This can be considered as a majority vote by
computational power.
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3.3 Ethereum
Ethereum [35, 36] is another major implementation of a permissonless blockchain. As
of August 2017, it is the second largest in terms of market capitalization after Bitcoin.
Ethereum shares many concepts with its counterpart Bitcoin, for example, both record
a history of transaction by producing and linking blocks, both operate in the open /
permissionless setting and both use Proof-of-Work as part of their consensus algorithm.
Ethereum allows for peer-to-peer payments without a trusted third party just like Bitcoin.

Despite the similarities, there are also various aspects, which distinguish both blockchains.
While Bitcoin with its limited scripting ability has set its focus on financial transactions,
Ethereum provides a platform which allows anyone to build their own applications. In
this sense, Ethereum is a more general purpose blockchain. Here, more general purpose
does not necessarily mean better. There are complex trade-offs involved. For example,
the increased flexibility is directly associated with a higher complexity and a larger attack
surface.

Ether The cryptographic currency of the Ethereum platform is called Ether. In
the simplest case, Ether can be sent from one account2 in the Ethereum network to
another account, very similar to the process, in which Bitcoins are transferred between
Bitcoin addresses. Just like Bitcoins can be divided into smaller units (i.e. mBTC,
Satoshi), Ether can also be divided into smaller parts called Wei – 1 Ether being equal
to 1,000,000,000,000,000,000 Wei [37]. This divisibility enables payments of very small
amounts such as the payment of computational resources in Ethereum itself.

Smart Contracts & the Ethereum Virtual Machine In Bitcoin, users can only
interact with the system in a very limited way. They can submit transaction, which will
eventually be processed and validated by miners according the consensus rules. A Bitcoin
transaction, at a technical level, is actually a program in a non-turing complete, stack-
based scripting language. Although there a variety of possible operations in Bitcoin’s
scripting language there are a number of limitations, i.e.:

(1) No loops

(2) No constructs for recursion

(3) No state

Ethereum addresses this shortcomings by introducing a more powerful execution envi-
ronment: the Ethereum Virtual Machine (EVM). The EVM is used to process so-called
Smart Contracts in the Ethereum network. Smart Contracts can be viewed as computer
programs running on the Ethereum platform. Such programs are typically expressed in a
higher level programming language such as Solidity. A noticeable difference to Bitcoin

2Here we refer to simple account, i.e. account without attached contract code.
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is that the allowed programs form a turning complete language, i.e. allow arbitrary
computations, in particular loops, calls to other subroutines as well as data store and
read operations. The EVM is run by each node in the Ethereum network to verify and
process transactions. Therefore, each node has to process all the instructions of the
Ethereum blockchain.

Deterministic Execution The EVM has to process all Smart Contracts in a deter-
ministic manner, because otherwise different network nodes cannot easily agree on a single
execution. This is a restriction in case non-manipulable and unpredictable randomness
is required for the execution of particular Smart Contracts. Random beacon protocols
as described in chapters 4 and 6 might be used to obtain the required randomness in a
verifiable manner, which does not contradict the deterministic execution environment of
the EVM.

3.4 Cryptographic Hash Functions
Cryptographic hash functions are important primitives in the field of modern cryptography
[38]. They have been shown to be very useful to solve various security related challenges
in the field of telecommunication and computer networks [39]. A major application of
cryptographic hash functions is public key cryptography. Here, in a first step, they are
used to condense the input to a fixed size. The result is then used to construct a digital
signature to ensure authenticity of the whole message [40].

More recently, cryptographic hash functions are used as fundamental building block
of cryptographic currencies. In [1], S. Nakamoto describes Proof-of-Work, which uses
cryptographic hash functions, as part of a consensus mechanism for decentralized systems

In this thesis, we focus on cryptographic hash functions. Hence, when we omit the term
cryptographic and just use the term hash function, we always refer to cryptographic hash
functions.

A hash function H takes some finite input bitstring M and efficiently produces an
output value H(M). The output H(M) is called the hash of M . Since H operates
deterministically and without side effects, there is exactly one unique hash per message.
Typical lengths for the hash are, for example, 160, 256 or 512 bits. The length of the
output only depends on the specific algorithm chosen, but not on the length of the input
message M .
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3.4.1 Properties of Cryptographic Hash Functions

Consider the following two examples of the hash function SHA3-256 :

SHA3-256("The quick brown fox jumps over the lazy dog")
=> 69070dda01975c8c120c3aada1b282394e7f032fa9cf32f4cb2259a0897dfc04

SHA3-256("The quick brown fox jumps over the lazy dog.")
=> a80f839cd4f83f6c3dafc87feae470045e4eb0d366397d5c6ce34ba1739f734d

This examples demonstrates the fundamental properties of a secure hash function.
Intuitively, the output of a hash function (here given as a hexadecimal value) appears to
be random and unrelated to the input. Small modifications on the input (e.g. adding a
dot at the end of the message in the example) change the hash drastically. In fact each
bit of the output gets flipped with a probability of approximately 50% [41].

More formally, we consider the following properties of a hash function H on input x, x′
and outputs y, y′ as given in [38]3:

(1) preimage resistance — for essentially all pre-specified outputs, it is computationally
infeasible to find any input which hashes to that output, i.e., to find any preimage
x′ such that H(x′) = y when given any y for which a corresponding input is not
known.

(2) 2nd-preimage resistance — it is computationally infeasible to find any second
input which has the same output as any specified input, i.e., given x, to find a
2nd-preimage x′ 6= x such that H(x) = H(x′).

(3) collision resistance — it is computationally infeasible to find any two distinct inputs
x, x′, which hash to the same output, i.e., such that H(x) = H(x′). (Note that
here there is free choice of both inputs.)

A hash function with collision resistance always satisfies the property of 2nd-preimage
resistance as well. Preimage resistance is not guaranteed in this case. However, in practice
this implication is almost always true [38].

Collision resistance in practice By definition, the input of a hash function is of
arbitrary (finite) length and the output is of fixed length, e.g. 256 bits. Therfore, there
must exist collisions for such hash functions, i.e. there are indeed messages M and M ′
such that M 6= M ′ but H(M) = H(M ′). However, finding such values is computationally
infeasible and, hence, extremely unlikely for secure hash functions.

Due to the so-called birthday attack, a collision on an ideal hash function with 256 bit
output length can be found on average using about 2128 hash invocations. In comparison,

3 Here, we changed the original notation of the hash function h(·) to H(·) for consistency.
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the arguably largest effort for calculating SHA256 hashes is mining in the cryptocurrency
Bitcoin. In April 2017, the estimated number of hashes calculated every second reached
around 7 · 1018 ≈ 1.5 · 262 [6]. Assuming this computation power of the Bitcoin network
as a constant, the expected time for finding a collision with this amount of computational
resources would still be approximately 2.2 · 1011 years (220,000 million years).

3.4.2 The Random Oracle Model

When describing protocols which internally use cryptographic hash functions, their secu-
rity is often evaluated in the so-called Random Oracle Model (ROM). It was introduced
by Bellare and Rogaway in 1995 and serves as a “bridge between cryptographic theory
and cryptographic practice” as they stated in [42].

Some criticism, e.g. the existence of provably secure signatures in the ROM, which
are insecure in practice, was stated by, for example, Canetti et al. in [43]. However,
Koblitz and Menezes in [44] argue “that there is no evidence that the need for the random
oracle assumption in a proof indicates the presence of a real world security weakness
in the corresponding protocol”. The discussed state-of-the-art protocols as well as our
constructions rely on the ROM abstraction and the security properties of their realizations
(e.g. SHA-3).

Hash functions as Random Oracles We refer to [42] for a formal definition. Intu-
itively, in the ROM, hash functions are modelled as random oracles. This means that
we do not consider the actual implementation of the hash function, but rather use an
abstraction. Querying a random oracle with a messageM is the abstraction for evaluating
a hash function on the message M .

The abstraction works as follows: The random oracle initially stores an empty set D of
tuples (a, b). When queried with a message M , it checks if (M,x) ∈ D for some element
x. Based on the result of the check, there are two options:

(1) ∃x, (M,x) ∈ D: In this case, x is returned as response to the query.

(2) ¬∃x, (M,x) ∈ D: Otherwise, some value y is randomly selected. Then, the tuple
(M,y) is added to the set D and y is returned as response to the query.

Notice that the construction above satisfies all properties of secure hash functions as
given in the previous section. Therefore, this abstraction can be used in protocols, which
require secure hash functions. To obtain a practical implementation, the random oracle is
then replaced by a cryptographically secure hash function. Currently considered suitable
candidates are SHA-3 variants such as SHA3-256, for example recommended by NIST
[45].
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3.5 Digital Signature Schemes

Digital signatures are primitives in the field of public key cryptography, or asymmetric
cryptography. Consider the case when two parties, Alice and Bob want to communicate
with each other by exchanging messages. A digital signature σ = signskA(M) of a
message M , sent from Alice to Bob, then ensures that Alice was indeed the sender of M .
Only Alice can produce a valid signature since the signature is dependent on skA, the
secret/private key only known to Alice. After sending the message M and the signature
σ to Bob, Bob can plausibly convince a third party of the fact that Alice did sign M ,
whereas Alice cannot deny the fact that she signed the message. The digital signature
also ensures that modifications of the message M can be detected at the time of signature
verification.

A digital signature scheme consists of three efficient (polynomial-time) algorithms [46]:

(1) Signing algorithm signsk(M): Given a message M and a secret key sk, this
algorithm produces a digital signature. The signing algorithm might use additional
randomness, thus the algorithm might be non-deterministic.

(2) Verification algorithm verifypk(σ,M): Given a candidate digital signature σ of
a message M and the public key pk of the message signer, this algorithm checks
whether σ is a valid signature of M , i.e. it checks if σ = signsk(M) holds.

(3) Key generation algorithm keygen(): This probabilistic algorithm creates a se-
cret/public keypair (sk, pk). The private/secret key sk is used for signing and is
kept private. The public key pk is required for verification typically distributed via
a public key infrastructure (PKI).

3.5.1 RSA Signatures

In the following, we illustrate the RSA digital signature scheme. The original scheme
was described by Rivest, Shamir and Adleman in [47].

Key generation algorithm: keygen()
Choose two large prime numbers p and q.
Compute n = p · q.
Compute φ(n) = (p− 1) · (q − 1).
Pick an integer 1 < e < φ(n) such that e and φ(n) are relatively prime.4
Compute d = e−1 (mod φ(n)) as the multiplicative inverse of e.5
The public key pk and private/secret sk are then given by: pk = (n, e) and sk = (n, d).

4 gcd(e, φ(n)) = 1 must hold – i.e. greatest number dividing both e and φ(n) is required to be 1.
5 I.e. compute d such that d · e ≡ 1 (mod φ(n)) holds using the extended euclidean algorithm.
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Signing algorithm: signsk(M)
Using the private key sk = (n, d), the signature σ is obtained by computing σ ≡ Md

(mod n). To allow messages of arbitrary length, full domain hashing using a hash function
H with output range {0, 1, ..., n−1} might be used. In this case, σ is given by σ ≡ H(M)d
(mod n).

Verification algorithm: verifypk(σ,M)
Using the public key pk = (n, e), the verifier computes M ′ ≡ σe (mod n).
Then, the verification algorithm returns VALID if, and only if, the condition M = M ′

holds (or H(M) = H(M ′) in the case of arbitrary length messages).

Security considerations The security of this scheme is based on the (unproven but
widely studied) assumption that factoring the RSA modulus n from the public key into its
prime factors p and q is intractable for large primes p and q. In [48], NIST recommends
at least 2048 bits for the size of the RSA modulus n.6

We stress that this illustration is not aimed to provide a guideline for building a secure
system in practice. For additional information on secure RSA based signatures, the
reader might consider [49] and [50].

Uniqueness of RSA signatures As we further elaborate in section 3.6, unique
signature schemes are important building blocks for verifiable random functions (VRFs).
Intuitively, uniqueness here means that the verification algorithm only excepts a single
signature per message. A formal definition is given in [51]. Notice that RSA as described
above produces signatures deterministically. There is however no guaranty for uniqueness.
Consider the following counterexample: n = 13031, e = 3, M = 360, σ1 = 1977,
σ2 = 3471, σ3 = 8368. A verifier knowing the public key (n, e) verifies the signatures by
checking the following conditions:

360 ≡ 19773 (mod 13031)
360 ≡ 34713 (mod 13031)
360 ≡ 83683 (mod 13031)

Notice that all three conditions hold. Therefore, the counter example show, that there is
indeed a single message with different valid signatures, which contradicts the definition
of uniqueness.

The problem in this case is that e and φ(n) are not relatively prime. This property is
required by the key generation algorithm of RSA. However, a verifier cannot check this
condition and, therefore, cannot be sure that the public key was indeed constructed
correctly. For this purpose, a verifier would need to know that φ(n) = 12792. This
requires a factorization of n = 13031 = 157 · 83. While this calculation is easy for the

6 The website https://www.keylength.com provides a comparison of various key size recommendations
by different parties.
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small numbers in the example, it is infeasible in practice as large values of p and q are
used. The reason for this is that there are no known efficient algorithms for integer
factorization (on classical computers).

A solution to this problem is that the verifier requires e to be a prime number with e > n.
Choosing e in this way ensures that e and φ(n) are relative prime [51].

Applications Upon the use case of ensuring authentication, non-repudiation and
integrity of messages, digital signatures are useful in a variety of applications. Secure
internet communication via TLS/SSL uses digital signatures to ensure the validity of
TLS/SSL certificates [52]. Bitcoin uses digital signatures to ensure that funds can only
be spent by their rightful owners [1]. More recently, digital signatures have also been
used as a building block to generate randomness in Dfinity and Algorand:

• Dfinity [14] builds a verifiable random function (VRF, see section 3.6) based on
Boneh-Lynn-Shacham (BLS) signatures [15]. The described protocol allows a group
of participants to agree on a random number, which is then used as a common coin
in an asynchronous BFT consensus protocol [14].

• Chen et al. [17] describes the Algorand protocol (short for algorithmic randomness),
which heavily uses digital signatures and cryptographic hash functions to generate
verifiable randomness and use it to perform leader and verifier selection. They
require a digital signature scheme with unique signatures in the protocol [17] but do
not specify which signature scheme to use. As we discuss in more detail in section
3.6, signature schemes typically do not have this property. BLS signatures are one
noticeable exception [15].

3.6 Verifiable Random Functions (VRF)

In this section, we describe verifiable random functions (VRF). Intuitively, the idea
behind a VRF is that Alice can ask Bob to compute a function fs on some input x. Only
B is able to compute fs as its result is dependent on some secret value s, which only
Bob knows. The result v = fs(x) has the property of being unique and computationally
indistinguishable from a truly random string v′ of equal length. Alice wants to be sure
that Bob indeed provided the unique correct result of the computation [53]. VRFs are
introduced by Micali, Rabin and Vadhan in [53] as a natural extension of pseudo random
functions (PRFs).

Pseudo Random Functions (PRFs) Micali et al. define a PRF fs(x) as an efficiently
computable function from input bitstrings of length a to output bitstrings of length b.
The value s denotes a seed. The fundamental property of the PRF is that an observer
cannot distinguish the outputs of the PRF from truly random strings of the same length.
This property holds based on the following assumptions [53]:
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(1) The observer does not know the seed s.

(2) The observer is computationally bounded.

These assumptions do not imply that the description of the PRF has to be kept se-
cret. Keeping the seed s private is sufficient. In practice, PRFs are constructed using
cryptographic primitives such as block ciphers, or hash functions.

Verifiable Random Functions (VRFs) VRFs address the issue of unverifiability
of PRFs. Consider the case where a party computing fs(x1), fs(x2), ..., fs(xn) claims
the corresponding outputs are o1, o2, ..., on. Without knowledge of s, an observer (by
definition) cannot verify that applying fs to xi indeed yields the corresponding output oi.
As soon as s gets published, future output values are not indistinguishable from truly
random strings anymore. They get fully predictable and can be efficiently computed by
any party.

To obtain verifiability without compromising the unpredictability property of future
outputs, a party knowing the seed s publishes v = fs(x) together with a proof proofx.
This proof allows verification of the fact that v = fs(x) indeed holds without revealing s.
It is crucial that a party knowing s can only construct a valid proof for a unique v for
every x [53]. For the proof itself, there is no uniqueness requirement.

Early solutions proposed interactive zero knowledge proofs [53]. However, Micali et al. in
[53] and other authors described solutions [51, 54, 55], which do not require interaction
for the verification process.

VRFs via Digital Signatures To construct a VRF with non-interactive proofs, one
might consider to use digital signatures (see section 3.5) as an underlying primitive.
Directly defining fs(x) = signsk(M) based on the signing function signsk(M) of a digital
signature scheme is insufficient in general. The core property needed to construct a
VRF from a digital signature scheme is uniqueness of the signatures. The corresponding
verification algorithm must only accept a single output value for each input. Unfortunately,
these properties typically do not hold. Popular signatures schemes such as DSA, ECDSA
[56] or RSA-PSS [49] operate non-deterministically and can, therefore, produce multiple
different signatures for a single message M . Even when using a specification for a
deterministic signing operation signsk(M), for example as given in [57], this does not
result in a VRF. The signer can still construct multiple valid signatures by not following
the scheme’s deterministic approach for generating certain parameters (for example by
picking a non-random nonce value).

A signature scheme satisfying the uniqueness property can been seen as verifiable unpre-
dictable function (VUF) [53]. Micali et al. further proof a way to convert a VUF to a
VRF. Full VRF schemes, based on the following different number theoretic assumptions,
have been proposed:
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(1) RSA Hardness Assumption [53]

(2) (Decisional) Diffie Hellman Separation [51]

(3) Decisional Bilinear Diffie-Hellman Inversion [54]

(4) Decision Linear Assumption [55]

We do not provide additional details on these schemes as our construction in chapter 6
uses a different approach based on publicly-verifiable secret sharing (see section 3.9). In
practical protocols such as Dfinity [58] (see section 4.2) and Algorand [17] (see section
4.3), VRFs are constructed by a combination of cryptographic primitives such as unique
digital signatures and cryptographic hash functions.

3.7 Secret Sharing

Secret Sharing was independently introduced by Shamir [59] and Blakley [60] in 1979.
The main idea of secret sharing is to distribute a secret S among a certain number of
participants. Each one of those n participants receives a part of the secret, called a
share. Shares can later be combined by collaborating participants to reconstruct the
original secret. The number of collaborating participants needed for recovering the secret
successfully is referred to as t. We consistently denote this scenario by a (t, n) secret
sharing scheme. Any group of t (or more) out of n participants can recover S from their
shares.

The secret S is typically some highly sensitive digital information, for example an
encryption key. However, we use a 6-digit code vault combination as our secret for an
illustrative example. Consider the following scenario for a (3, 3) secret sharing scheme: A
father wants to share the combination S = 913821 among his three children. The children
should be able to open the vault together in case the father dies. For this purpose, the
father tells each children a different share from the set {91xxxx, xx38xx, xxxx21}. We
now analyse this example using the basic goals / criteria for a secret sharing scheme
given by Shamir [59]:

(1) Knowledge of at least t shares makes S easily computable.

(2) Knowledge of fewer than t shares leaves S completely undetermined, i.e. all possible
values for S are equally likely.

Clearly the children are able to recover the vault combination by concatenating their
digits. Thus, criteria (1) is met. Criteria (2) is violated as each share leaks two digits of
information about the secret S. Intuitively, a child with, for example, the share 91xxxx
knows that S must start with 91, hence the first digits are determined. As a consequence,
the search space is reduced.
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For the case, where t = n holds, a secure secret sharing scheme which fulfills both
criteria can be easily obtained. Consider that the father instead calculates the shares
{Si | 1 ≤ i ≤ n} using the following method:

(1) Si ∈R [0, 999999] 1 ≤ i ≤ n− 1

(2) Sn = (S −
n−1∑
i=1

Si) (mod 1000000)

Here, ∈R U denotes a randomly chosen element from a set U . This intuitively means
that the father randomly selects shares from [0, 999999] such that their sum is equal to S
(mod 1000000). An example for the shares is the set {811591, 527645, 574585}. Criteria
(1) is met as the reconstruction of S can easily be obtained by summing the shares:

S ≡ 811591 + 527645 + 574585 (mod 1000000)
S = 913821

In contrast to the previous method, this one does not leak any information about S as
long as less than three children collaborate. Thus criteria (2) is also met.

The given example can be generalized for any n > 1 resulting in a simple and efficient
secret sharing scheme for the special case t = n. Addition and subtraction might be
replaced by logical-exclusive-or.

By distributing the original secret S to all participants, one trivially obtains a (1, n)
secret sharing scheme. For a solution, which also works in the general case 1 ≤ t ≤ n,
Shamir’s original secret sharing scheme is introduced in the following section.

3.7.1 Shamir’s Secret Sharing

Shamir’s secret sharing protocol [59] is based on polynomial interpolation. The key
idea behind this scheme is the fact that given t points (x1, y1), (x2, y2), ..., (xt, yt) with
different x-coordinates, there is a unique polynomial p(x) of degree t− 1 going through
all of the points.

To perform (t, n) secret sharing, the dealer (i.e. the party who wants to share a secret S)
constructs a polynomial of degree t− 1 [59]:

p(x) = α0 + α1x+ ...αt−1x
t−1

The coefficients αi | 0 ≤ i ≤ t − 1 are selected uniformly at random from Zp =
{0, 1, 2, ..., p− 1}. Here p is a prime number selected such that p > S and p > n holds.7
The coefficient α0 is defined as S, i.e. α0 = S. By construction, α0 = S = p(0) holds.

7 Note that without loss of generality the secret S is a number or can be encoded as a number [59].
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The dealer then computes a share for each participant by evaluating the polynomial p(x)
for different x-values.

Si = p(i) 1 ≤ i ≤ n

The evaluation is performed using modular arithmetic over the finite field Zp. Thus,
the dealer and participants need to agree on the prime number p as protocol parameter.
Notice that each pair (i, Si) represents a point on the polynomial.

The reconstruction of the secret S is then accomplished by Lagrange interpolation using t
different shares. Without loss of generality, let i1, i2, ..., it denote the indices of the shares
used for reconstruction. Then, reconstruction of S can be accomplished by calculating
[61]:

S =
t∑

j=1
Sij

t∏
k=1
j 6=k

ik · (ik − ij)−1

All calculation has to be done using modular arithmetic over p. Thus, x−1 denotes the
multiplicative inverse of x, i.e. x · x−1 ≡ 1 (mod p). Since p is prime and (ik − ij) is
always non-zero, this inverse always exists. This calculation can be done in polynomial
time, therefore criteria (1) for secret sharing schemes is met.

Regarding criteria (2), we consider a coalition of t−1 participants and corresponding share
indices i1, i2, ..., it−1. Such a coalition should not be able to obtain (partial) information
about the secret. This is the case for Shamir’s protocol, it is information theoretically
secure [62]. For each of the candidate secrets S′ ∈ Zp, exactly one polynomial p′(x),
which satisfies the conditions p′(0) = S′ and p′(ij) = Sij ∀j | 1 ≤ j ≤ t − 1, can be
found. The resulting candidate polynomials are all equally likely and, thus, do not leak
information about S [59]. This statement in shown more formally in [61].
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3.7.2 Concrete example of Shamir’s Secret Sharing

We now provide an example for a (3, 5) Shamir’s secret sharing protocol. The full example,
including all computation steps, is given in appendix A.1.

Let S = α0 = 10.

Select prime p = 53, thus Zp = Z53 = {0, 1, 2, ..., 52}.

Choose coefficients α1 = 17 and α2 = 44.

This yields the polynomial p(x) = 10 + 17x+ 44x2.

Calculate the shares:

S1 ≡ p(1) (mod 53)
S1 ≡ 10 + 17 · 1 + 44 · 12 (mod 53)
S1 ≡ 10 + 17 + 44 (mod 53)
S1 ≡ 71 (mod 53)
S1 = 18

Similarly we get S2 = 8, S3 = 33, S4 = 40 and S5 = 29.

We select a set of t shares for reconstruction: {S1, S4, S5}

The indices for the shares are then given by i1 = 1, i2 = 4 and i3 = 5.

The reconstruction can be computed as follows:

S ≡
t∑

j=1
Sij

t∏
k=1
j 6=k

ik · (ik − ij)−1 (mod 53)

S ≡ Si1
3∏

k=1
16=k

ik · (ik − i1)−1 + Si2

3∏
k=1
26=k

ik · (ik − i2)−1 + Si3 ·
3∏

k=1
36=k

ik · (ik − i3)−1 (mod 53)

...

S ≡ Si1
3∏

k=1
16=k

ik · (ik − i1)−1 + 4 + 29 (mod 53)

S ≡ Si1 ·
(
(i2 · (i2 − i1)−1) · (i3 · (i3 − i1)−1)

)
+ 4 + 29 (mod 53)

S ≡ S1 ·
(
(4 · (4− 1)−1) · (5 · (5− 1)−1)

)
+ 4 + 29 (mod 53)

S ≡ 18 ·
(
(4 · (3)−1) · (5 · (4)−1)

)
+ 4 + 29 (mod 53)

S ≡ 18 ·
(
(4 · 18) · (5 · 40)

)
+ 4 + 29 (mod 53)

S ≡ 259200 + 4 + 29 (mod 53)
S ≡ 30 + 4 + 29
S = 10
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3.8 Verifiable Secret Sharing
Shamir’s secret sharing protocol as described in section 3.7.1 relies on the following
crucial assumption: The participants assume that they are given correct shares. This is
reasonable for the example given (e.g. a father wants to share a secret to his children).
However, this limits the ability to apply this scheme in e.g. fault tolerant (or even
trust-less) distributed systems, because this assumption does not hold in such cases [63].
Therefore, extending the abilities of secret sharing to this broader use case is natural
and leads to the notion of verifiable secret sharing (VSS), which was introduced by Chor,
Goldwasser, Micali and Awerbuch in 1985 [63].

Protecting against malicious dealers Shamir Secret Sharing assumes an honest
dealer (i.e. honest share distributors), while VSS is designed to resolve the problem
of faulty dealers. More precisely, when using a verifiable secret sharing scheme, each
participant can verify that his own share was correctly created by the dealer. During
reconstruction, VSS additionally provides protection against malicious participants.

In 1987, Feldman introduced an efficient VSS scheme based on Shamir’s secret sharing
protocol [64]. Feldman’s scheme greatly reduces the amount off communication needed
compared to the scheme presented by Chor et al. In addition, Feldman’s VSS was the
first to support non-interactive share verification. A participant who has received his
share does not need to exchange further messages with the dealer in order to verify his
share [64].

To illustrate the problems VSS protects against, consider the reconstruction phase of a
(t, n) Shamir’s secret sharing protocol. Assume that participants P1, P2, ..., Pt−1 already
pooled their shares. Then, participant Pt can select an invalid share to influence the
outcome of the reconstruction to its liking, given that Pt knows the pooled shares. Given
that no more then t participants pool their share for reconstruction, this manipulation
remains undetected. Even worse, in case of a dispute during reconstruction (e.g. different
groups of t participants get different results), a malicious participant can just claim that
the dealer provided the invalid share. In Shamir’s case, this is totally plausible and
there is no way to prove that a malicious participant indeed tried to manipulate the
reconstruction. We explain some modern techniques to resolve these challenges, as well
as the additional challenge of share verification for other third parties in the following
section.
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3.9 Publicly-Verifiable Secret Sharing
In this section, we present an even stronger notation of secret sharing, namely publicly-
verifiable secret sharing (PVSS). This type of secret sharing scheme is the one used
for state-of-the-art random beacon protocols as well as for our constructions. First,
we summarize the properties expected from a (t, n) PVSS scheme with a dealer and n
participants:

(1) Knowledge of at least t shares makes S easily computable [59].

(2) Knowledge of fewer than t shares leaves S completely undetermined, i.e. all possible
values for S are equally likely [59].

(3) A malicious dealer, sending incorrect shares to some or all participants, should be
detected [20].

(4) Malicious participants, providing invalid shares during reconstruction, should be
detected [20].

(5) The verification process of distributed shares and shares submitted for reconstruction
should be non-interactive [64].

The additional property required for a PVSS is then given by:

(6) Any third party (not necessary a participant) can verify the validity of the dis-
tributed shares and the shares used for reconstruction [20]. I.e. (5) should be
publicly-verifiable.

There is a variety of different approaches for PVSS which meet those criteria. Stadler
first described the notion of PVSS and introduced a PVSS scheme based on ElGamal’s
cryptosystem [65]. Since then, a variety of schemes based on different number theoretic
assumptions have been proposed. Shil et al. in [66] give an overview and a comparison
of these schemes.

3.9.1 Schoenmakers’ PVSS

For our random beacon protocol, we consider Schoenmakers’ PVSS [20], as this one is
the simplest PVSS to our knowledge and is already used in a variety of state-of-the-art
protocols such as Ouroboros [12], RandHound / RandHerd [18] and Scrape [19]. In the
following, we describe Schoenmakers’ PVSS, which we use as a fundamental building block
for our protocol. This section describes the scheme itself, whereas chapter 6 describes
how the scheme is applied in our solution. Formal correctness and security proofs for the
scheme are provided in [20].

Schoenmakers’ PVSS has as variety of properties which suit our use case:
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• Common assumptions: The scheme is based on standard assumptions only, the Diffie-
Hellman assumption (DDH), its computational variant (CDH) and the existence of
secure cryptographic hash functions.

• Simplicity: The use of Schoenmakers’ Special PVSS scheme, which provides a
solution of sharing random secrets only, is sufficient for our use case.

• Low communication costs: The scheme works with a minimal number of messages.
The dealer is required to broadcast a single message to the participants for share
distribution. Participants are required to broadcast a single message for share
reconstruction.

Compared to Shamir’s scheme, Schoenmakers’ PVSS additionally requires number the-
oretical assumptions: namely the existence of groups for which the discrete logarithm
problem is intractable [20].

Publicly known parameters Following the notation from [20], n participants P1, P2
,..., Pn and the dealer agree on a group Gq with two generators g and G. The group
Gq is a group of prime order q, in which the discrete logarithm problem is hard. The
generators g and G are independent, i.e. no party knows the discrete logarithm of g in
respect to G. Further, the public keys yi = Gxi | 1 ≤ i ≤ n are publicly known, where
each xi ∈R Z×q denotes the corresponding private key of participant Pi.

Share distribution The following protocol describes the process of sharing a random
value S ∈ Gq. Hence, we restrict ourselves to the description of the Special PVSS scheme
introduced in section 3 of [20].

(1) Like in Shamir’s secret sharing protocol (see section 3.7.1), the dealer constructs a
polynomial of degree t− 1.

p(x) =
t−1∑
j=0

αjx
j = α0 + α1x+ ...+ αt−1x

t−1

The coefficients αi | 0 ≤ i ≤ t− 1 are selected randomly from Zq. In Shamir Secret
Sharing, we defined α0 such that S = α0 holds (see section 3.7.1). However, here
we define s = α0 and obtain S by computing S = Gs. Since the discrete logarithm
is hard in Gq, we cannot obtain s from Gs and, thus, cannot share arbitrary
secrets from Gq but only random ones. In our case, this poses no restriction, but
Schoenmakers proposed a straight forward extension, which can be used to share
arbitrary secrets [20].

(2) The shares are then computed by evaluating the polynomial p(i) for each participant
Pi as previously described for Shamir’s secret sharing protocol. However, only the
encrypted shares Yi are published.

Yi = y
p(i)
i | 1 ≤ i ≤ n
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Share correctness proof In order to allow any third party to verify that the encrypted
shares Yi have been computed correctly, the dealer publishes a non-interactive zero-
knowledge proof (NIZK proof) alongside the shares. The proof consists of three parts:

(1) The commitments Cj for the coefficients of the secret polynomial.

Cj = gαj | 0 ≤ j ≤ t− 1

(2) A common challenge c ∈ Zq, computed using a cryptographic hash function H(·).

c = H
(
〈X1, X2, ..., Xn〉, 〈Y1, Y2, ..., Yn〉, 〈a1,1, a1,2, ..., a1,n〉, 〈a2,1, a2,2, ..., a2,n〉

)
The values Xi ∈ Gq, Yi ∈ Gq, a1,i ∈ Gq and a2,i ∈ Gq for 1 ≤ i ≤ n are defined as
follows:

Xi = gp(i)

Yi = y
p(i)
i

wi ∈R Zq
a1,i = gwi

a2,i = ywii

(3) The n responses ri | 1 ≤ i ≤ n computed as:

ri = wi − p(i) · c | 1 ≤ i ≤ n

Notice that part (2) and (3) are the result of applying the non-interactive version of the
protocol DLEQ(g,Xi, yi, Yi) once for each participant, using a common challenge c.

DLEQ The (non-interactive version of the) DLEQ(g1, h1, g2, h2) protocol is used in
the PVSS scheme as a subprotocol to prove that two discrete logarithms in Gq are equal.
More precisely, execution of the protocol shows that logg1h1 = logg2h2 for generators g1,
h1, g2, h2 ∈ Gq. The protocol is described by Schoenmakers as follows: [20]

It consists of the following steps, where [only] the prover knows α such that
h1 = gα1 and h2 = gα2 :

1. The prover sends a1 = gw1 and a2 = gw2 to the verifier, with w ∈R Zq.
2. The verifier send a random challenge c ∈R Zq to the prover.
3. The prover responds with r = w − αc (mod q).
4. The verifier checks that a1 = gr1h

c
1 and a2 = gr2h

c
2.
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This protocol requires interaction between the verifier and the prover, as the verifier has
to provide the challenge c. To apply the protocol in a non-interactive way (i.e. only one
message from the prover to the verifier is required), c is computed as a cryptographic
hash of h1, h2, a1, a2. When running multiple instances of the protocol DLEQ in parallel,
a single common challenge can be used [20].

To apply the protocol DLEQ to get parts (2) and (3) of the share correctness proof as
stated above, DLEQ(g,Xi, yi, Yi) is run for each participant Pi. Notice that the dealer
computed Xi = gp(i), Yi = y

p(i)
i and, thus, knows αi = p(i) which is required to run the

protocol.

Share verification The dealer publishes the encrypted shares Yi, the commitments
Cj to the coefficients of the secret polynomial p(·), the common challenge c and the n
responses ri, i.e. the n-tuple 〈{Y1, Y2, ..., Yn}, {C0, C1, ..., Ct−1}, c, {r1, r2, ..., rn}〉. Given
these values, any third party can verify the correctness of the encrypted shares without
the need to decrypt the shares using the following three step approach:

(1) Compute Xi = gp(i) | 1 ≤ i ≤ n by calculating:

Xi =
t−1∏
j=0

(Cj)i
j

Which is possible since:

Xi = gp(i) = g
∑t−1

j=0 αj ·i
j

=
t−1∏
j=0

gαj ·i
j =

t−1∏
j=0

(gαj )ij =
t−1∏
j=0

(Cj)i
j

(2) Compute a2i = gwi and a2i = ywii for 1 ≤ i ≤ n using:

a1i = gri ·Xc
i

a2i = yrii · Y
c
i

Which yields correct values for a1i and a2i if and only if the published proof is valid
since:

a1i = gwi a2i = ywii

a1i = gwi−p(i)·c · gp(i)·c a2i = y
wi−p(i)·c
i · yp(i)·ci

a1i = gwi−p(i)·c ·
(
gp(i)

)c
a2i = y

wi−p(i)·c
i ·

(
y
p(i)
i

)c
a1i = gri ·Xc

i a2i = yrii · Y
c
i

(3) Verify the correctness of the shares by computing:

c′ = H
(
〈X1, X2, ..., Xn〉, 〈Y1, Y2, ..., Yn〉, 〈a1,1, a1,2, ..., a1,n〉, 〈a2,1, a2,2, ..., a2,n〉

)
The shares are valid if, and only if, the condition c = c′ holds.
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Share decryption For reconstruction of the shared secret S, at least t participants
need to decrypt their shares Yi. The decrypted share is defined by Si = Gp(i) and obtained
using Si = Y

x−1
i

i , where x−1
i denotes the multiplicative inverse of the private key xi in

Z×q .

Share decryption correctness proof In order to convince other participants of the
fact that the share Si is a valid decryption of Yi, a participant Pi proves the correctness
using the non-interactive version of the DLEQ subprotocol: DLEQ(G, yi, Si, Yi).

This shows that a participant Pi knows an α such that Gα = yi and Sαi = Yi. More
intuitively, this shows that Pi knows the private key corresponding to yi and that Si is a
decryption of Yi using this private key.

Notice that α = xi indeed is a solution for Gα = yi and Sαi = Yi:

Gα = Gxi = yi

Sαi = Sxii =
(
Gp(i)

)xi = Gxi·p(i) = (Gxi)p(i) = y
p(i)
i = Yi

The result of the non-interactive DLEQ protocol, i.e. the challenge c = H(yi, Yi, a1, a2)
and the corresponding response r, are provided alongside the decryption Si of Yi.

Share decryption verification This process is very similar to the verification of the
encrypted shares Yi published by the dealer. Any third party can validate the correctness
of the decryption of a share Si using the verification step from DLEQ(G, yi, Si, Yi). First,
a1 = Gr · yci and a2 = Sri · Y c

i are computed. Then, the results are verified by comparing
the hash c′ = H(yi, Yi, a1, a2) with c. The decryption is valid if, and only if, c = c′ holds.

Share reconstruction The reconstruction of the shared secret S = Gs is accomplished
by Lagrange interpolation as previously described for Shamir Secret Sharing in section
3.7.1. Let, without loss of generality, denote i1, i2, ..., it the indices of the validated
shares, which should be used for reconstruction. Then S can be calculated using the
following formula:

S =
t∑

j=1
Sij

t∏
k=1
j 6=k

ik · (ik − ij)−1

Here, (ik − ij)−1 denotes the multiplicative inverse of (ik − ij) in Z×q .
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CHAPTER 4
State-of-the-Art

In this chapter, we present different state-of-the-art approaches for generating publicly-
verifiable and bias-resistant randomness in decentralized environments. We assume
general understanding of the cryptographic primitives described in chapter 3.

As an introduction into the topic, we explain how randomness might be obtained by using
commitment schemes in section 4.1. We further introduce how economic incentives can
be combined with commitment schemes and illustrate resulting problems. The process of
using Proof-of-Work as a source of randomness and the potential issues of this approach
are also addressed in this section.

In section 4.2, we describe a state-of-the-art approach for generating randomness used in
the Dfinity blockchain [14]. We focus on the construction of the random beacon protocol
and describe the properties of the underlying cryptographic primitives used.

Section 4.3 introduces J. Chen’s and S. Micali’s approach for producing randomness as
part of the Algorand protocol [17].

We finish the chapter with presenting PVSS-based approaches, namely Ouroboros [12],
RandShare / RandHound / RandHerd [18] and Scrape [19], in sections 4.4, 4.5 and 4.6.
In contrast to the other approaches, Scrape introduces an optimization of the underlying
PVSS protocol, which can directly be applied to all protocols using Schoenmakers’ PVSS.
This, in particular, includes our proposed protocol as described in chapter 6.
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4.1 Basic Constructions

In the following subsections, we illustrate some common approaches for generating
random numbers in the context of blockchains. These approaches are considered as an
introduction to the topic. While the approaches are quite useful in specific scenarios,
they are not suitable as a general purpose protocol for generating verifiable randomness
in decentralized systems. We highlight the individual problems in the corresponding
subsections.

4.1.1 Commitment Schemes

A classical approach for generated random numbers in a two-party setting is called a
commitment scheme. Using a cryptographic hash function H(·), the construction is
straightforward and illustrated by the following example:

(1) Alice picks x as a 256 bit random integer.

(2) Bob picks a random 256 bit integer y.

(3) Alice sends the corresponding commitment Com(x)← H(x) to Bob.

(4) Bob sends y to Alice.

(5) Alice sends x to Bob

(6) Bob verifies that the condition Com(x) = H(x) indeed holds.

(7) Both obtain the random number x⊕ y.

In order to ensure that none of the parties can manipulate the result x⊕ y, the order of
the messages sent is important. In particular, Alice has to send the commitment Com(x)
before receiving y and Bob has to send y before receiving x. In case both participants
follow the protocol, and the underlying hash function is secure, the result is indeed a
randomly chosen 256 bit integer. Neither, Alice nor Bob can bias the result. This simple
approach of commit and reveal can be extended for multiple participants.

Still, a critical problem with the approach remains: Alice learns the resulting random
number as soon as she receives y. Bob, however, does not know the result at this point
in time and, in fact, never gets to know the result if Alice chooses to abort the protocol
at this stage – i.e. in case Alice does not send x to Bob. The problem is that Alice can
decide, based on full knowledge of the resulting random number, whether or not the
result suits her. Depending on this judgment, she can decide to send or withhold the
value of x. In the multi-party setting, the problems gets worse as the protocol relies on
the fact that all participants reveal their commitments.
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4.1.2 Commitments Schemes with Security Deposits

To reduce the issues of simple commitment schemes as described in the previous section,
a possible option is to introduce economic incentives. For this purpose, we consider the
above approach, but use a Smart Contract (e.g. in the Ethereum blockchain) to verify
the behavior of the participants and penalize malicious actors:

(1) Alice picks a random 256 bit integer x.

(2) Bob picks a random 256 bit integer y.

(3) Alice sends the corresponding commitment Com(x)← H(x) and a security deposit
to the Smart Contract.

(4) Bob sends y to the Smart Contract.

(5) Alice send x to the Smart Contract.

(6) The Smart Contract verifies that the condition Com(x) = H(x) indeed holds.
Depending on the verification result either

(1) the security deposit is returned back to Alice and both parties obtain the
x⊕ y or

(2) Alice loses the security deposit and Bob does not get to know x⊕ y.

Additionally, the Smart Contract can also enforce that Alice has to provide x during
a specific timeframe, e.g. within 1000 blocks after the Smart Contract receives y. The
timeframe needs to be of considerable size to ensure Alice gets the transaction into the
blockchain in time. In particular, this is important during periods where the blockchain
is congested.1

Depending on the use for the resulting random number, in particular the associated
economic value, the rational decision for Alice is to reveal or withhold the value of x. The
underlying problem for Bob remains: there is no technical way to force Alice to reveal
the value of x. Furthermore, the use of the Smart Contract poses additional challenges
for Alice: Bob or others actors might try to prevent Alice from sending x to the Smart
Contract. Miners could choose to not include the corresponding transaction into the
blockchain – in fact, they could get paid by Bob to do so. From Alice’s perspective, her
security deposit might be at risk, even if she acts honestly and according to the described
protocol.

1 As blockchains such as Ethereum impose a limit on the number of transactions executed within a
certain time frame, the processing of transactions might be delayed during periods of high transaction
volume.
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4.1.3 Proof-of-Work

Proof-of-Work blockchains, for example Bitcoin, rely on miners for transaction validation.
After the verification of individual transactions, miners group them together into blocks.
The header of a block typically includes the root of the transaction merkle tree as well as
the hash of the previous block. This block header is repetitively hashed using different
nonce values to find a block hash, which is lower than a certain difficulty target.

This process makes the blockhashes very difficult to (i) predict and (ii) manipulate by
non-miners. Furthermore, a new random value is automatically part of each produced
block. Therefore, such a protocol has very good liveness characteristics – it only stalls, if
the underlying blockchain stalls.

Predictability and Bias-Resistance

Prediction as well as biasing the blockhashes used as random beacon values is possible for
miners. However, they only have limited (and costly) options to predict or manipulate
the next beacon value. As soon as a miner finds a block, it can either

• publish the block (immediately or at a later point in time) or

• withhold the block.

This decision directly influences the value of the random beacon. In the first case, its
value is most likely2 based on the miner’s block, while the random beacon value is derived
from a different block (potentially produced by a different miner) in the second case.

Incentives

So the key question here is: What are miners incentives for being honest vs. being
dishonest – e.g. when do they publish or withhold?

Honest miners publish blocks as soon as the corresponding blockhashes are found. This
allows other miners to build on top and maximizes the probability that the honest miner’s
block is part of the longest chain. As a result, the probability that the block reward and
fees are actually paid to the particular miner are maximized.

However, there are also scenarios in which the decision to discard a block – and, thus,
lose the block reward – is the rational one. One scenario, where this is the case, could be
that the random beacon is used by a gambling service, and the miner itself has placed
bets in this service. In this case, a rational miner would discard his block under the
following two premises: (i) it looses his bet in case it publishes and (ii) the bet is higher
than the block reward and fees.

2The are various influence factor such as network propagation delay.
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In case the random beacon is used for leader selection, miners might selectively discard
blocks to influence the selection of the next leader – i.e. only publish blocks, which lead
to a selected leader controlled by the colluding parties.

Withholding and publishing at a later time might also be a rational decision. For
illustration, consider a gambling service or lottery. The miner who withholds a block,
already knows the next value of the random beacon and, thus, can potentially place bets
on the profitable outcomes.

As soon as a miner finds a block, it could also try to find a different one, which yields a
more suitable random beacon value. In case the miner is not able to do so, it can publish
his found block immediately after another block is known – thus creating chances to still
gain the associate block reward.

Use case scenarios

Besides the mentioned attack vectors, the use of a Proof-of-Work block hash as basis for
a randomness beacon is quite appealing. Some reasons to consider are:

(1) easy implementation (implicit)

(2) verifiability

(3) unpredictability by non-miners

(4) good liveness characteristics

In cases where the amount at stake is less than the block reward, rational miners behave
honest. The properties of the cryptographic hash function then ensure equally distributed3

values and bias-resistance for the random beacon. The approach might also be extended
to cases where a significantly higher amount is at stake. A possible extension is described
in section 4.1.4.

Major drawbacks of the approach are for example the high computational resources
required, as well as complex verification, which in principle requires the verification of
the underlying blockchain itself.

3 It is required to remove the leading zeros from the Proof-of-Work blockhash.
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4.1.4 Iterated Proof-of-Work

In the previous section, we examined the properties of reusing the blockhashes of Proof-
of-Work blockchains as a random beacon. In this section, we describe an extension to
address the issues of that approach. The use of blockhashes from future blocks on its
own is not sufficient, because a manipulation by miners is possible. When a miner finds
a block, it can make an informed decision on whether or not to publish the block and,
thus, influence the next random number directly.

While we cannot provide a way to force the miner to release the block, we can take away
his ability to make a informed decision. At the cost of high computational resources, this
yields a protocol producing very strong verifiable randomness, achieving near optimal
bias-resistance and unpredictability.

Due to the high computational demands, the approach is solely suitable for scenarios
where a random beacon value is required only a small number of times. The generation
of initial protocol parameters might be an appealing use case.

The approach works as follows: The participants, who want to agree on a random beacon
value, agree on some block number x of a future block Bx for example in the Bitcoin
blockchain. As soon as this block is actually mined, the corresponding random beacon
value Rx is derived from the block’s hash H(Bx) via the construction of a hashchain, i.e.
by iteratively applying a hash function H(·) to H(Bx):

Rx = H(H(H(. . . H(Bx) . . . )))
Rx = H∆t·r(H(Bx))

Depending on the values of ∆t and r, the above calculation is very time intensive and can
only be computed sequentially. The parameter ∆t specifies the targeted computational
delay in seconds, whereas r is the rate of sequential hash operations per second.

As our tests show, r ≈ 1, 000, 000 for an non-optimized Python implementation running on
a notebook with an 2.3 GHz Intel® Core™ i5-5300 CPU. Thus, in practice r � 1, 000, 000.

While r is a performance assumption, ∆t as a protocol parameter is selected much higher
than the Bitcoin’s block interval. This ensures that a miner MA cannot calculate Rx
before publishing a found block. If it tries, other (honest) miners would find and publish
their blocks in the meantime. As a result, MA’s block is never included in the main
branch of the blockchain and hence not used as the base block for obtaining Rx.

The value ∆t serves as security parameter. For uses cases like protocol bootstrapping,
even a value of one day (∆t = 86400) is suitable as the high amount of sequential
computation involved to obtain and verify Rx has to be done only once.
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4.2 Dfinity

A different approach for generating randomness in decentralized environments is developed
as part of the Dfinity project [58]. The randomness generated is directly used at the core
of Dfinity’s consensus algorithm. Dfinity aims to provide a decentralized cloud platform,
based on various techniques related to blockchain. The concept is somewhat similar to
Ethereum and focuses on achieving improved performance, scalability and capacity.

Even though independent related work on Dfinity is very limited as of June 2017, we
believe that their approach for generating verifiable randomness is a valuable contribution.
Therefore, we provide a critical review of the Dfinity protocol with a particular focus on
the construction of their random beacon protocol.

4.2.1 Threat and Communication Model

We can only describe Dfinity’s threat model based on the fault tolerance example given
in [14]. To the best of our knowledge, their exists no detailed description at the time of
writing. Dfinity considers a threat model in which at most 30% of the network nodes
at most fail or behave byzantine. Communication uses authenticated messages with
pre-shared public keys. Further, an asynchronous BFT protocol is used as a subprotocol,
but no additional details on the assumption in regard to synchrony of the overall protocol
are given.

4.2.2 Unique Threshold Signatures

The concept of Dfinity is based on a cryptographic primitive called unique threshold
signatures. We have introduced the underlying concepts of digital signatures schemes in
section 3.5.

In Dfinity so-called BLS-signatures are used. BLS signatures, short for Boneh, Lynn
and Shacham, are introduced in [15]. For details on how the signature scheme works,
we refer the interested reader to their paper. In this thesis, will limited ourselves to the
properties of particular interest: (i) uniqueness and (ii) the ability to perform signature
aggregation. Both properties are essential for Dfinity’s random beacon protocol and are
described in the following sections 4.2.3 and 4.2.4.

4.2.3 Signature Uniqueness

A digital signature scheme is called unique if, and only if, the verification algorithm
accepts exactly one signature per message. Arguably, the simplest unique signatures are
based on RSA, which is described in section 3.5.1. Choosing the public exponent e as a
prime number with e > n, where n = p · q is the modulus, ensures uniqueness [51]. For
additional details as well as a counterexample for RSA signatures without this additional
property, we refer the reader to sections 3.5.1 and 3.6.
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BLS signatures, as used in Dfinity’s protocol, are one of a few signatures schemes, which
inherently provide the property of uniqueness. As we outlined in sections 3.5 and 3.6,
deterministic signature schemes do not automatically imply uniqueness. BLS Signatures
are quite new as they have only been introduced in 2003. Therefore, standardization,
parameter recommendations as well as public libraries are coming up short compared to
more traditional digital signatures schemes like DSA and its variants.

4.2.4 Signature Aggregation

The possibility for signature aggregation in a threshold signature scheme is closely related
to secret sharing as introduced in section 3.7. In a (t, n) secret sharing scheme, a dealer
distributes shares of a secret value s to n participants in such a way that any coalition
of at least t participants can recover the secret s. A group of less than t participants
cannot obtain any information about s.

In comparison, any group of at least t members in a (t, n) threshold signature scheme can
construct a valid signature on some message M , whereas a coalition of fewer participants
cannot do so. Such a threshold signature scheme consists of multiple parts:

(1) Setup: There are basically two options for setting up a threshold signature scheme:

a) Key Distribution: A trusted dealer computes the group’s private/public
keypair, calculates a private key for each participant and sends these keys to
the corresponding participant via a secure channel.

b) Distributed Key Generation (DKG): The participants run a multi-party proto-
col to generate their private keys and the groups public key without a trusted
dealer. During the DKG protocol, the group’s private key is never available
to a single participant.

(2) Signing: Computing a partial signature, also called a signature share, for a
particular message.

(3) Signature Aggregation: Combining signatures shares from t participants to
produce a signature for a particular message. This process is typically accomplished
by Lagrange Interpolation, as described in section 3.7 for the purpose of secret
sharing.

(4) Signature verification: Verifying an (aggregated) signature using the group’s
public key.

The theoretical basis describing how BLS can be used as threshold signature scheme
are outlined in e.g. [16]. A working implementation of the BLS threshold signature
scheme, which is used by Dfinity, is developed by S. Mitsunari and available at https:
//github.com/herumi/bls. It includes a command line interface which allows users to
perform the above steps. Unfortunately, key generation is only supported via a trusted
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dealer in this library. Additionally, there is a library for pairing-based cryptography
including available at https://crypto.stanford.edu/pbc/.

4.2.5 Dfinity’s Random Beacon

In this section, we explain how Dfinity uses unique threshold signatures to construct a
random beacon protocol. The description is based on [14].

We assume that participants in the network register their public key on the underlying
blockchain. In parallel to blockchain progression, participants form groups, run a
distributed key generation protocol (DKG) and register the group’s public key on the
blockchain if the DKG was successful. Participants cannot freely select other nodes to
form a group but are rather assigned to a specific group by the value of the random
beacon itself.

Group selection At each block height h, one of the groups, which have registered
their public key on the blockchain, is responsible for producing the next value of the
random beacon. The responsible group is determined as follows:

Gh+1 = G[σh mod |G|]

Here, Gh+1 represents the group responsible at block height h + 1, whereas σh is the
value of the random beacon at height h and G is the set of all registered groups.

Randomness generation Given a group Gh, the value σh of the random beacon at
round h is obtained by aggregation of the signature shares of its members {σhp | p ∈ Gh}.
To obtain and then distribute σhp , a group member p signs the previous value of the
random beacon σh−1 using his private key.

Due to the properties of the BLS signature scheme, each σhp and, thus, also the aggregation
is unique. The aggregated signature can be verified using the groups public key. This is
an important property, which not only ensures a deterministic and verifiable sequence of
random beacon values but also allows for off-chain signature aggregation. In addition,
the size of the aggregated signature is constant and, thus, not dependent on the number
of participants or the size of the group producing the signature.

4.2.6 Distributed Key Generation

Distributed key generation (DKG) is a key requirement for Dfinity’s threshold signature
scheme. DKG allows a group to agree on a public/private keypair for the BLS signature
scheme in such a way that the private key is not exposed to any participant. This by itself
is a hard problem, which Dfinity wants to solve via the use of Joint-Feldman Verifiable
Secret Sharing [14]. As of June 2017, we were unable to find additional information on
their approach for DKG or on a working prototype.
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4.2.7 Properties

In the following, we provide an assessment of Dfinity’s random beacon protocol in regard
to important protocol characteristics such as: availability / liveness, unpredictability,
bias-resistance and verifiability.

Availability / Liveness A critical factor in Dfinity construction is the ability to
produce a valid threshold signature at each height of the chain. Whether or not this is
possible depends on various factors – the most important being:

• Total number of nodes

• Number of faulty/byzantine nodes

• Threshold group size

• Signature aggregation threshold

The probability of failing to construct a valid threshold signature at a single height is
approximately 10−17 [14]. In the example stated, at most 3000 of 10000 process are faulty,
the group size is 400 and each set of 201 (non-faulty) group members is able to produce
the threshold signatures. The failure probability is obtained via a hyper-geometric
distribution and is therefore, simply speaking, the answer to the following question:
Given 10000 nodes (3000 faulty ones, 7000 correct ones), what is the probability selecting
at least 201 correct nodes when uniformly at random picking 400 nodes?

For, for such a claim to be true, is very important that the underlying assumption indeed
hold – e.g. are the nodes actually picked at random. In this case, we thus need to
ask whether or not an attacker can influence in which groups his nodes are placed. As
described in [14], nodes are assigned to groups randomly based on the random beacon
value itself. As important details are missing in the available information, the self-
reference, i.e. using the random beacon to assign nodes to groups producing the random
beacon, is very hard to assess. An attacker might influence the selection by carefully
coordinating the time when it registers nodes or the public keys it uses. Whenever an
attacker is able to register a group’s public key onto the chain for which it controls half of
the group members, it can prevent chain progression. A suitable countermeasure might
be to “lock” registered nodes for some period of time and assign them to groups only
after that period has elapsed.

Unpredictability and Bias-Resistance While Dfinity describes their randomness as
unpredictable and unmanipulable [14] similar concerns as described for availability arise.
In case the attacker is able to influence the nodes assignment to groups, unpredictability
and bias-resistance is not ensured. Again, using the information available, a detailed
assessment is not possible.
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Verifiability The chain of random beacon values can be verified by a third party,
which knows the registered group’s public keys. Based on previous values of the random
beacon, a verifier can determine which group was selected to construct the next random
beacon.

4.3 Algorand
Algorand, as described by J. Chen and S. Micali in [17], is a proposal for a public
distributed ledger. It aims to address problems of previous designs such as high compu-
tational costs (Proof-of-Work) or blockchain forks. The authors describe Algorand as
follows: [17]

Algorand is a truly democratic and efficient way to implement a public ledger.
Unlike prior implementations based on Proof-of-Work, it requires a negligible
amount of computation, and generates a transaction history that will not
fork with overwhelmingly high probability.

Algorand, in its entirety, cannot be covered as part of these thesis due to its extent and
complexity. Nevertheless, we introduce the key concepts of Algorand, focusing on two
particular areas of interest:

• How is verifiable randomness generated in Algorand?

• Given such a randomness beacon, how can it be used as a building block for leader
and verifier selection in a decentralized system?

4.3.1 Threat and Communication Model

Algorand’s threat model is described in detail by Chen et al. in section 2.6 [17]. In the
following, we summarize the key assumptions:

(1) The byzantine adversary controls less than one half of the total stake (money) in the
system. This assumption is similar to controlling at most 50% of the computational
power in e.g. Bitcoin or a scenario where an attackers controls at most f out of
n = 2f + 1 nodes.

(2) The adversary is computationally bounded.

An additional distinguishing fact from other protocols is that the adversary is highly
dynamic. At each point in time it can immediately corrupt any nodes it likes with the
only restriction being that upper bound (1) is not exceeded.

The communication model assumes that all messages are delivered to all reachable nodes
within some time bound. This time bound is depended on the network reachability and
message size. Message integrity and authentication is ensured by digital signatures.
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4.3.2 Algorand’s Random Beacon

Algorand, at its core, requires unpredictable randomness for leader and verifier selection.
This randomness is generated by making use of the properties of cryptographic hash
functions and digital signatures. For the digital signature scheme, the uniqueness property,
as discussed in sections 3.5 and 3.6, is required. In [17], the authors do not give details
about which concrete unique digital signature scheme is used.

Following the notation from the original description in we use:

• Qr for the value of the random beacon at round r

• lr for the leader at round r

• SIGp(M) for the digital signature of the message M signed by participant p

• H(·) for a 256-bit cryptographic hash function

Q0 is the initial random number and part of the system description. Given Qr−1, there
are two possible ways to derive the value of the random beacon for the next round Qr:

(1) The leader lr exists and reveals SIGlr(Qr−1) together with his leadership credential
during some predefined time interval. Then Qr = H(SIGlr(Qr−1), r − 1)

(2) Otherwise Qr = H(Qr−1, r − 1)

The leadership credential, i.e. a proof that lr is in fact a potential leader for round r, is
explained in detail in next section 4.3.4.

Key for this construction is the uniqueness of the signature scheme. This ensure that a
(malicious) participant has only very limited options to influence the value of the random
beacon. A malicious leader can only choose whether or not to reveal SIGlr(Qr−1).

4.3.3 Verifier Selection

Algorand uses a byzantine agreement protocol to verify proposed blocks, which should
be added to the blockchain. Running such a protocol among all participants in the
network is not feasible as soon as the number of participants gets large. To circumvent
this problem, Algorand selects a much smaller set of participants which perform the
verification. In order to ensure that an attacker cannot control more than a third of the
verifiers, although the number of verifiers is much smaller than the number of nodes an
attacker might control, it is important that this selection is performed randomly.

In Algorand, the verifier set is highly dynamic. It changes after each round and even
during individual steps in a single round. Using such a dynamic verifier set allows
Algorand to deal with a powerful adversary model. For additional details, we refer the
reader to [17].
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Whether or not a player i has the role of a verifier during a step s in round r is determined
based on the following condition:

.H(SIGi(r, s,Qr−1)) ≤ p

Here, .H(x) denotes the hash value of x represented as a 256-bit binary number in the
interval [0, 1]. Qr−1 is the value of the random beacon from the previous round and p is
the probability of a participant being selected.

An important property of the above approach is that other players do not know which
nodes are verifiers in a particular round. Attackers cannot know this fact either. Only
participant i itself can compute SIGi(·), and is therefore able to determine whether or
not it is in the set of verifiers. In addition, a participant i can convince other participants
that it has the verifier role by publishing his verifier credential SIGi(r, s,Qr−1).

4.3.4 Leader Selection

Leader selection is very similar to verifier selection. A participant i is called potential
leader if .H(SIGi(r, 1, Qr−1)) ≤ 1/n, where n denotes the number of participants. It is
possible that there are no leaders for a round r. This issue is addressed by automatically
determining the next value of the random beacon based on the previous value. There is
no distinction between the case of a leaderless round or a round with a non-responding
leader.

When there are potential leaders, the one with the lowest value for .H(SIGi(r, 1, Qr−1))
is the round’s leader. All potential leaders perform the following tasks:

(1) Propose a new block, which should be added to the blockchain.

(2) Sign the previous value of the random beacon to obtain the next value.

(3) Publish a proof of leadership, i.e. SIGi(r, 1, Qr−1)

As the protocol does not ensure that there is only one potential leader, it is the verifiers
duty to agree on one of the proposed blocks in case of multiple proposals.

4.3.5 Properties

In the following, we assess Algorand’s random beacon in regard to important protocol
characteristics.
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Availability / Liveness Protocol liveness is ensured with high probability. The
acceptable failure probability F of the protocol is a protocol parameter. Typical values
given by the authors are F = 10−12 and F = 10−18 [17]. However, it is possible that
there is no potential leader responding in a particular round. In this case, progress is
nevertheless ensured, because the participants running the BFT protocol agree on this
fact and a new leader is selected based on the next quantity Qr = H(Qr−1, r − 1).

Unpredictability Unpredictability of the random beacon values is ensured eventually.
In case a sequence of malicious leaders is selected, those leaders can predict future
values of the random beacon. However, the probability of such a selection decreases
exponentially in the length of the sequence. As such, Algorand achieves unpredictability
very similar to the probabilistic bounds given in our protocol (see section 6.6 and figure
6.3).

Bias-Resistance Bias-resistance for the random beacon values is not established. In
case a malicious nodes is selected as a potential leader for some round, this node can
always choose to (i) publish or (ii) withhold his leadership credential. Consequently,
different values for the random beacon are obtained. In case two or more malicious
participants fullfil the leadership requirement (see section 4.3.4), the adversary can further
pick which leadership credential to publish.

Our evaluation is supported by the authors themselves, who explicitly discuss the scenario
of malicious leaders [17]:

When lr is malicious, however, Qr is no longer univocally defined from Qr−1

and lr. There are at least two separate values for Qr. [...] what matter[s] is
that lr has two choice[s] for Qr, and thus it can double his chances to have
another malicious user as the next leader. The options for Qr may even be
more numerous for the Adversary who controls a malicious lr. [...]

The authors further argue, without giving specific numbers, that the adversary’s choices
cannot significantly reduce the probability of the selection of honest users in the future.
In section 5.6, we evaluate our illustrative protocol and show that the impact on the
leader selection probability is non-negligible. While this approach for obtaining the
random beacon values is not identical to Algorand, it suffers from the same problem:
malicious leaders selectively withholding values.

Verifiability The produced random beacon values can be verified by a third party
with access to the public keys of the network nodes. In each step, the random beacon
value is either based on (i) the previous beacon value only or (ii) on the previous value
combined with a leadership credential. In case (i), verification can be accomplished by
re-computation of the involved hash function, whereas an additional signature verification
is required in case (ii). There might be the requirement for additional verification in
regard to the agreement reached by the BFT protocol.
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4.4 Ouroboros
Kiayias et al. [12] described a multi-party protocol for generating verifiable randomness.
Their protocol called Ouroboros, uses the obtained randomness for the leader selection
process in the context of a Proof-of-Stake system. The authors cover the overall design
of a secure Proof-of-Stake system, whereas we limit ourselves to the description of one of
the contributions in the paper: the process of simulating a trusted random beacon.

The protocol for simulating a trusted random beacon is based on the concept of Publicly-
Verifiable Secret Sharing (PVSS). A detailed introduction to secret sharing is given in
section 3.7. The details for the PVSS protocol used here are given in section 3.9.

4.4.1 PVSS Fundamentals

A (t, n) PVSS scheme is a protocol, which allows a dealer to share information among
n participants in such a way, that any subset of this participants with more than t
members can reconstruct the shared information. The parameter t is called the threshold
of the (t, n) PVSS scheme. Any group with less than t participants cannot obtain any
information about the shared secret.

The dealer computes a share for each participant in the protocol. Each share is encrypted
with the public key of the corresponding participant and, thus, might be distributed via
a public communication channel. The PVSS protocol ensures that anyone with access
to the shares (e.g. not only the participants) can verify their validity. This is achieved
using non-interactive zero-knowledge (NIZK) proofs and is an essential property of the
PVSS scheme as it removes the requirement for a trusted dealer. Participants and third
parties can verify that the dealer behaves according to the protocol on their own.

In addition, the used Schoenmakers’ PVSS [20] ensures that participants cannot manipu-
late the reconstruction process – they might submit invalid shares; other participants or
third parties can, however, verify the submitted shares and detect a manipulation. As
long as at least t valid shares are pooled for reconstruction, the process is successful.

4.4.2 Threat and Communication Model

Before introducing how PVSS can be used to simulating a trusted random beacon, we
discuss the threat and communication model.

In Ouroboros, it is assumed that an adversary controls less than 50% of the stake in
the system. This approach is similar to the traditional setting, in which an attacker is
controlling at most f out of n = 2f + 1 nodes.

The communication model is a synchronous one, where time is split into discrete units
called slots. A slot is associated with a block of the underlying distributed ledger [12].
Participants exchange / broadcast messages via this blockchain. It is assumed that
broadcasted messages are received by other participants during the same slot they are
sent [12].
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4.4.3 Ouroboros’ Random Beacon

In the following, we describe the construction for the random beacon protocol as part of the
Ouroboros protocol based on [12]. The protocol is run by n participants {P1, P2, ..., Pn}
and is separated into three phases – commitment, reveal and recovery phase. The security
of the construction is based on the assumption of an honest and participating majority.

Commit phase During the commit phase, each participant executes the share distri-
bution process for a (t, n − 1) PVSS protocol in the role of the dealer. The threshold
t may be set to f + 1. This ensures that any (honest) majority is able to reconstruct
the shared value during the reconstruction phase if necessary, while a colluding attacker
cannot reconstruct the value without participation of honest participants.

For this purpose, each participant generates randomness for its private polynomial and
computes the shares for the other participants. These shares together with the zero-
knowledge correctness proof are published through the blockchain as communication
mechanism.

Reveal phase After a fixed timeframe (e.g. 4000 slots as described in the original
paper) the reveal phase starts, if a majority of participants provided valid commitments.
Otherwise, the protocol stalls. Similar to the process used in simple hash based commit-
ment schemes, Schoenmakers’ PVSS allows to reveal the shared secret without requiring
a reconstruction. A possibility is that each participant in the role of the dealer publishes
the coefficient α0 of the underlying PVSS scheme. The other participants can verify the
correctness by checking that the condition C0 = gα0 holds. Additionally computation of
the shared secret S = Gα0 is possible using the additional information of α0.

Recover phase After the reveal phase (e.g. 4000 slots), the participants begin to
recover any missing shared secrets. While this phase could be run simultaneously with the
reveal phase, Kiayias et al. prefer to run them sequentially for efficiency [12]. Participants
publish their decrypted shares and the corresponding share decryption proofs for all
the valid commitments which have not been revealed. As soon as a majority of the
participants have finished executing these steps, the shared secrets for all the valid
previously-submitted commitments are known to the participants.

Combining the shared secrets After the three phases of the protocol have been
finished, the underlying blockchain contains all the information required to compute the
value of the random beacon and verify its correctness. No further message exchange is
required. Without loss of generality, let {S1, S2, ..., Sm} | t ≤ m ≤ n be the set of shared
secrets so that for each secret Si, a valid PVSS commitment (i.e. the shares and their
zero-knowledge correctness proof) has been submitted during the commitment phase.
The next value of the random beacon is then obtained in a deterministic fashion by
combining the entropy from {S1, S2, ..., Sm} e.g. by using a hash function. For this step,

48



4.4. Ouroboros

it is irrelevant whether Si is obtained by reconstruction or directly during the reveal
phase.

4.4.4 Properties

In this section, we describe some of the key properties of Ouroboros’ PVSS-based random
beacon. When considering the protocol from a high level view, it is quite similar to
hash-based commitment schemes as described in section 4.1.1. In both approaches,
participants, in a first step, commit themselves to values, which are revealed at a later
point in time (e.g. after all / a majority of the commitments are collected).

However, the key advantage of the PVSS-based protocol is the ability to force the
revealment of the committed values. In a hash-based commitment scheme, the last party
/ the last colluding parties can choose whether or not to reveal their values based on the
outcome of the random beacon. The outcome can be precomputed by malicious actors as
soon as honest participants have revealed their values. This problem and its implications
are described in further detail in section 4.1.1. Based on the honest participating majority
assumption, withholding the committed values after publishing a commitment is not
effective in the PVSS-based protocol, because honest nodes can always recover the shared
secrets.

Availability / Liveness Availability is ensured in the given model. After a fixed time
interval, a majority of honest participants has provided their secret shares for all other
participants and the protocol progresses to the reveal phase. The reveal and recover
phases succeed as the threshold for reconstruction is defined in a way that always allows
an honest majority to recover the commit secret values.

Unpredictability and Bias-Resistance As there is an honest majority required to
reach the recover phase of the protocol, at least one honest participant Ph has committed
itself to a random number Sh. This random number is further part of the resulting
values {S1, S2, ..., Sh, ..., Sm}. All the other values might come from a colluding attacker.
However, at the time the attacker commits to its values, it cannot know Sh, because an
honest majority is required to obtain it by reconstruction. Per definition, honest nodes
do not participate in any recovery process during the commitment phase. Therefore, the
value of the random beacon depends on some true random value Sh as well as on some
other values, which might be manipulated by an adversary. At the time the adversary has
to decide on his values, it, however, cannot know Sh and, thus, cannot predict the value
of the random beacon. Therefore, Sh and the values of the adversary are independent
sources of randomness. The combination of such sources is as strong as the strongest one
of them [67]. Thus, Ouroboros achieves both unpredictability and bias-resistance.

Verifiability The protocol uses a blockchain as the underlying communication mech-
anism. All exchanged messages are thus written to the blockchain. The participant’s
public keys are also registered on the blockchain. Using this information, any third party,
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which is not necessarily a participant, is able to verify the execution of the protocol and
the value of the random beacon. This property follows directly from the used secret
sharing share, described in section 3.9.

Communication complexity During the commitment phase, each participant has to
distribute a single message via the blockchain. This message includes (i) the encrypted
shares for each participant and (ii) the zero-knowledge correctness proof for the shares.
Therefore, such a message has size O(n).

During the reveal phase, honest participants reveal their values, resulting in one message
broadcast of constant size per participant.

Recovering a single non-revealed value requires one message broadcast of constant size
from at least t participants. However, all participants might participate during the recon-
struction. This leads to O(n) broadcasted messages per reconstruction. A participant,
which provides shares for more than one recovery, might pool the corresponding messages
to a single one of size O(t).

The use of an agreed broadcast channel somewhat hide the fact that the number of
messages sent between all participants is actually O(n2) assuming a naive broadcast
implementation. Therefore, we summarize the actual number of messages sent in table
4.1. For the purpose of estimating the total amount of data transferred, we consider a
256-bit elliptic curve implementation of Schoenmakers’ PVSS. This means we assume
group elements and exponents can each be represented using 256 bits. As n describes the
total number of participants but shares have to be distributed to all other participants
except oneself, n instances of a (t, n− 1) PVSS scheme are run. We consider a typical
n = 3f + 1 scenario, in which an adversary controls less than a third of the nodes and
set t = f + 1 accordingly.

commit reveal recover

number of messages to
broadcast per sender

1 1 f

number of senders n n− f n− f

number of receivers n− 1 n− 1 n− f − 1

total number of messages
(assuming naive broadcast)

n · (n− 1) (n− f) · (n− 1) f · (n− f) · (n− f − 1)

Table 4.1: Communication requirements for Ouroboros’ random beacon protocol
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The messages sizes for a single participant per operation are given by:

(1) Commit: (2(n− 1) + t+ 1) · 256 bit

• Encrypted shares: (n− 1) · 256 bit
• Commitments to coefficients: t · 256 bit
• NIZK proof (common challenge): 256 bit
• NIZK proof (responses): (n− 1) · 256 bit

(2) Reveal: 256 bit

(3) Recover: 3 · 256 bit

• Decrypted share: 256 bit
• NIZK-Proof (challenge): 256 bit
• NIZK-Proof (response): 256 bit

Combining the communication requirements from table 4.1 with the messages size given
above, we can estimate the total amount of data transfer required by the protocol, which
is illustrated in figure 4.1.
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Figure 4.1: Total amount of communication required for a PVSS-based random beacon
protocol, assuming an adversary controlling up to 33% of the nodes
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4.5 RandShare, RandHound and RandHerd
RandShare [18], RandHound [18] and RandHerd [18] are three protocols for obtaining bias-
resistant randomness in decentralized environments. The authors describe RandShare as a
small-scale protocol only described for introduction, whereas RandHound and RandHerd
are tailored towards large scale deployment and are considering scalability aspects. In
RandHound, a client needs to contact a set of RandHound servers to obtain a new random
beacon value while RandHerd uses RandHound in a setup process and then delivers a
stream of random beacon values without a client interacting with the system.
The authors’ evaluation of their prototypes shows good performance across hundreds of
participants. In an exemplary scenario with 512 nodes, which are assigned into groups of
32, a client using RandHound can obtain a new random beacon value after 240 seconds
from the RandHound servers [18]. After protocol setup, which takes about 260 seconds,
RandHerd can output random beacon values at intervals of approximately 6 seconds [18].
Both RandHound and RandHerd fail to provide liveness in certain scenarios, where too
many byzantine nodes are assigned to subgroups of nodes. The upper bound for the
protocol failure probability varies depending on the group size and the number of used
groups. For the above configuration, Syta et al. give a failure probability of 0.08% [18].
RandShare is not effected by the same problem.

4.5.1 Threat and Communication Model

For the protocols, a threat model, where a byzantine adversary controls at most f out of
n = 3f + 1 nodes, is considered. Further, the authors assume asynchronous messaging,
where each message is eventually delivered and authenticated message channels are used.
Sent messages are signed and participants verify the signatures of all incoming messages
using a copy of the preshared public key of the sender.
The authors only explicitly state the asynchronous model for the illustrative protocol
RandShare. No details on the communication model are given for the more elaborate
RandHound and RandHerd protocols. The following quote from section III. A. indicates
that the communication model for RandHound is a (partially) synchronous one: [18]

The client chooses a subset of server inputs from each group, omitting servers
that did not respond on time or with proper values, thus fixing each group’s
secret and consequently the output of the protocol.

4.5.2 RandShare

Before introducing RandHound and RandHerd, the authors introduce a simpler protocol
called RandShare [18]. RandShare is similar to the Ouroboros approach described in
section 4.4.
Each participant acts as the dealer in an instance of PVSS, e.g. Schoenmakers’ PVSS, and
therefore shares a secret value with the other RandShare nodes. After the participants
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have committed to their values, these values are revailed or recovered and then combined to
obtain the random beacon value. To tolerate up to f byzantine nodes, honest participants
do not reveal their committed values and do not participate in any reconstruction until
they have decided on which shares to combine. For this purpose, a byzantine agreement
protocol is run in combination to the process of share verification.

The successful completion of the protocol is only ensured after a so-called barrier point
[18]. Whether or not this point is reached is depended on the outcome of the byzantine
agreement protocol. If the participants agree on a set of at least f + 1 commitments,
this set contains at least one commitment from an honest node. As all commitments are
revealed or can be recovered by a collaboration of honest nodes, the resulting secrets can
be combined, and consequently form an unbiased random beacon value as at least one
honest node’s secret is part of the combination.

4.5.3 RandHound

RandHound aims to address RandShare’s scalability issues, which directly arise from the
fact that RandShare uses a traditional byzantine agreement protocol among the set of all
participants. In RandHound, secrets are not shared among all servers but only within
defined subsets, reducing the communication and computational overhead from O(n3) to
O(nc2) [18]. As a client / server protocol, it is the client’s role to initiate communication
with the RandHound server to obtain randomness. Figure 4.2 illustrates RandHound
design:

Figure 4.2: Overview of the RandHound design [18]

In the following, the steps required to obtain a new random beacon value using RandHound
are given in more detail:

(1) The client constructs a session configuration, which includes a description of the
intended purpose of the randomness and uniquely identifies the protocol run.
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Further, the client randomly assigns servers to groups. In the exemplary scenario,
16 groups, each containing 32 servers, are used. The session configuration and the
group assignment is sent to all servers.

(2) Upon receiving the session configuration, servers store it and can therefore detect
malicious clients, who try to re-run the protocol multiple times until they receive a
favorable outcome. If a server sees the configuration for the first time, it performs
the share distribution process of a PVSS protocol, generating shares of a random
secret for all other servers in their group. The shares are not distributed to the
other servers but rather sent back to the client.

(3) The client randomly selects which server’s secret should be used to obtain the value
of the random beacon. For each of the groups, it has to select more than one third
of all servers belonging to that group. In case two thirds of the nodes in any group
do not respond, i.e. because they are controlled by the adversary, the protocol
stalls.

(4) The above selection is sent to all servers, which acknowledge the client’s choice.

(5) The client presents the acknowledgment to all servers, which verify the validity and
respond with the decrypted shares.

(6) The client recovers the randomness for all selected servers and uses Lagrange
interpolation to recover missing secrets. In case a single secret cannot be recovered,
the protocol is aborted. Otherwise the client combines the individual secrets and
constructs the random beacon value.

(7) The client presents the random beacon value as well as a transcript of the protocol
run to convince a third party of the fact that the random beacon value was indeed
obtained as described by the protocol.

Availability / Liveness An adversary might prevent honest clients to obtain a random
beacon value. This can happen in particular when the selected grouping from step (1)
contains groups, which contain less or equal to a third of honest servers. The protocol
might stall in step (3) as malicious servers might not respond, or at step (5) in case
byzantine servers do not follow the request of share decryption.

Unpredictability and Bias-Resistance In step (1), an adversarial client might
choose a non-random grouping. Using this approach, the client cannot obtain biased
randomness. The pigeonhole principle ensures that there is at least one group, where at
most a third of the nodes behave byzantine. For this group, the client cannot know the
resulting randomness before it commits to the outcome in step (4). As the client has
to combine randomness from all groups including at least one group which provides an
unbiased and unpredictable value, the resulting random beacon value is unbiased and
unpredictable.
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Malicious clients can, however, run the protocol multiple times. While (honest) servers
check for repeated protocol execution using the same session configuration, a client can
try different session configuration which are similar (e.g. they only differ slightly in their
purpose string, timestamp and so forth). This can lead to a malicious client, which can
choose one of multiple random beacon values as such minor differences might be hard to
identify for third parties.

Verifiability The resulting random beacon value is third party verifiable. For this
purpose the client, which obtained the random beacon values, provides the result, the
session configuration and the transcript of the protocol run to the verifier, who can
independently check the steps of the protocol execution.

4.5.4 RandHerd

RandHerd is the third protocol presented by Syta et al. in [18]. It is tailored towards the
use case of providing a sequence of random beacon values at regular intervals. RandHerd
is based on RandHound and improves its performance in case of repeated execution. The
authors describe their protocol as follows: [18]

RandHerd provides a continually-running decentralized service that can gen-
erate publicly-verifiable and unbiasable randomness on demand, at regular
intervals, or both. RandHerd’s goal is to reduce communication and compu-
tational overhead of the randomness generation further from RandHound’s
O(c2n) to O(c2 log n) given a group size c.

In the descriptions given in [18], the authors briefly mention that tree-structured commu-
nication and aggregation are used to reduce the complexity to O(c2 log n) per server.
However, no details on the construction of this primitives and the implied reduction
in communication complexity by the factor of log n

n are given. It is not clear in which
scenario the stated complexity of O(c2 log n) indeed holds and what the communication
complexity is in regard to the overall system.

In contrast to RandHound, RandHerd does not rely on a client to initiate the protocol.
Instead, a RandHerd instance is given by its configuration, which consists of a collection
of the servers’ public keys and the instance’s collective public key. RandHound is used
for protocol setup in order to established a secure sharding of nodes into groups. After
a successful setup, the random beacon values are obtained using an involved protocol
based on the techniques of “threshold-based witness cosigning” [18]. In the following,
we discuss important protocol properties, whereas for a detailed protocol description we
refer the reader to the original paper.

Availability / Liveness A direct consequence of using RandHound for protocol setup
is that RandHerd has at least the same system failure probability as RandHound. An
additional problem for availability arises, as RandHerd, at various stages of the protocol,
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requires a leader in order to make progress. In the defined threat model, the probability
of selecting a malicious leader is approximately 1/3, thus highly likely. In the scenario of
a malicious leader, availability is ensured by selecting a new leader using a BFT view
change protocol. Here, the authors give no additional details on the concrete protocol
and its communication overhead. In section C. Security Properties for the RandHerd
description, availability is only claimed in case of an honest leader [18]:

Given an honest leader, the protocol successfully completes and produces the
final random output Z with high probability.

Unpredictability and Bias-Resistance The protocol achieves unpredictability and
bias-resistance in the presence of a byzantine adversary, which is controlling up to f out
of 3f + 1 nodes. Both properties are ensured by the pigeonhole principle in a similar way
that RandHound accomplishes them.

Verifiability The produced random beacon outputs can be verified by a third party,
which checks the corresponding signature using the RandHerd’s instance collective
public key. The verifiability of the protocol setup is directly based on the properties of
RandHound.

4.6 Scrape

The construction of the Scrape random beacon protocol, as introduced in [19], is very
similar to the Ouroboros protocol outlined in detail in section 4.4. Therefore, we limit
ourselves to the key contributions of the authors: a variant of Schoenmakers’ PVSS
protocol.

The proposed PVSS improves the computation complexity for share verification to
O(n), compared to Schoenmakers’ variant which requires O(nt) exponentiations [19]. In
particular, when considering the fact that Ouroboros, Scrape and other PVSS-based
protocols like RandShare use n instances of the PVSS protocol simultaneously, the
optimization is an important contribution to achieve better scalability.

Scrape’s PVSS is based on the idea that secret sharing is equivalent to encoding the secret
with the corresponding Reed Solomon error correcting code [19]. We do not provide the
background information on Reed Solomon error correction codes here, but neverthelesss
present the required changes to Schoenmakers’ PVSS. In particular, we consider the
description of the πDDH protocol from [19]. Wherever possible, we follow the original
notation provided by Schoenmakers.
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4.6.1 Share Distribution

During share distribution, the dealer previously computed the commitments C0, C1, ..., Ct−1
using the coefficients α0, α1, ..., αt−1 of the underlying polynomial p(·):

Cj = gαj | 0 ≤ j ≤ t− 1

In the modified protocol, the commitments are computed based on the values of the
polynomial instead:

Ci = gp(i) | 1 ≤ j ≤ n− 1

Consequently, the NIZK share correctness proof is adapted. The parallel composition
DLEQ(g, Ci, yi, Yi) = 〈c, r1, r2, ..., rn〉 of the DLEQ subprotocol (illustrated in section
3.9.1) is used to prove correctness of the encrypted shares. Notice the correspondence
Ci = Xi between the new construction of the values Ci and Schoenmakers’ definition of
Xi.

4.6.2 Share Verification

The share verification previously relied on computing the values ofXi using C0, C1, ..., Ct−1:

Xi =
t−1∏
j=0

(Cj)i
j | 1 ≤ i ≤ n

The computation involves O(nt) exponentiations and is therefore inefficient for large sets
of participants. This calculation is not necessary in the modified PVSS. Instead, the NIZK
proof can be verified directly, as all required values, in particular Ci = Xi | 1 ≤ i ≤ n,
are already provided.

After verifying the NIZK proof, the verifier has to perform an additional check to ensure
the commitments are valid. For this purpose the verifier samples a random codeword of
the dual code, corresponding to the instance of the secret sharing scheme, and checks
whether the inner product with the share vector is 1 [19]. This means it performs the
following steps:

(1) Sample a random codeword 〈c⊥1 , c⊥2 , ..., c⊥n 〉 from the dual code with c⊥i = λif(i).
The definition of the Lagrange coefficients λi and the polynomial f(·) are given as
follows:

f(x) =
n−t−1∑
i=0

βix
i with βi ∈R Zq

λi =
∏
j 6=i

j

j − i
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(2) Compute the inner product with the shares vector 〈p(1), p(2), ..., p(n)〉, and check
whether the result is 1. The verification is only successful if the following condition
holds:

n∏
i=1

C
c⊥i
i = g

∑n

i=1 p(i)c
⊥
i = 1

The interested reader can follow the above procedure in detail in [19]. The authors
outline the approach as well as the underlying principles in regard to coding theory and
Reed Solomon error correction codes.

4.6.3 Use Cases

The described modification to Schoenmakers’ PVSS can directly be applied to PVSS-
based random beacon protocols using the same underlying PVSS protocol. In particular,
the optimization can be used in

(1) the Ouroboros protocol (see section 4.4),

(2) the RandShare / RandHound / RandHerd protocols (see section 4.5),

(3) our proposed solution (see chapter 6) as well as

(4) our protocol extension Quorum Share Distribution (see section 7.1).

The concept is orthogonal to the mentioned protocols and directly reduces computation
complexity by a factor t during share verification.
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CHAPTER 5
Hashchain-based Random Beacon

In this section, we introduce a concept for generating publicly-verifiable randomness in
decentralized systems. First, we describe a simplified random beacon based on hashchains.
In chapter 6, we then rely on these underlying concepts to introduce a random beacon
protocol based on PVSS.

5.1 Scenario and Threat-Model

We assume a permissioned blockchain setting, i.e. there is a fixed set of participants.
For simplicity, we further assume that these participants are known at the start of the
protocol and do not change over time. The communication model is a synchronous one,
in which message propagation time is fixed by some time bound. We further assume
pre-shared public keys, which are used for authenticated communication channels between
the participants.

5.2 Hashchains

Our construction is based on a cryptographic primitive called a hashchain. Hu et al.
describes them as follows [68]:

Lamport first proposed to use one-way chains for one-time password authen-
tication [69]. Subsequently, researchers proposed one-way chains as a basic
building block for digital cash, for extending the lifetime of digital certifi-
cates, for constructing one-time signatures, for packet authentication, etc. As
one-way chains are very efficient to verify, they recently became increasingly
popular for designing security protocols [...]
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Given some (secret) seed value s, a hashchain is computed by repeatedly applying a
cryptographic hash function H(·). In each step, the result of the previous step is taken
as the argument for the hash function, starting with s as initial argument. We introduce
the following notation, where vj represents the value of the hashchain after j steps:

v0 = s = H0(s)
v1 = H(s) = H1(s)
v2 = H(H(s)) = H2(s)
...

vj = H(vj−1) = Hj(s)
...

vd = ... = Hd(s)

Performance As modern hash functions such as SHA-2 or SHA-3 are quite fast,
computing hashchains with a significant length is possible. The calculation of the value
of the hashchain after 106 iterations takes less than one second.1

One-way characteristic As secure cryptographic hash functions are resistant against
preimage attacks, going back a step in the hashchain, i.e. computing the value vj−1 given
vj , is infeasible in practice. Thus, given some value vj of a hashchain, it is only possible
to calculate vj+1 efficiently, but not vj−1.

Commitment and Verification Publishing a value vd commits a participant to all
the previous values {vj | 0 ≤ j < d} in his hashchain. This means that if a participant
reveals some intermediate value vj at a later point in time, other participants can check
if this value is indeed part of the hashchain, given the value of vd. The verification
procedure is given in algorithm 5.1.

1 A corresponding test was performed using the SHA2-256 algorithm from Python’s hashlib package
running on a 2.3 GHz Intel® Core™ i5-5300.
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Algorithm 5.1: Verification of Hashchain Values

Input:
• a commitment vd = Hd(s) for a hashchain
• a candidate value v for this hashchain

Output:
• VALID if v ∈ {s,H(s), H2(s), ...,Hd(s)},
• INVALID otherwise

1 t← v
2 for j ← 1 to d do
3 t← H(t)
4 if t = vd then
5 return VALID

6 return INVALID

This algorithm has linear runtime O(d) in the worst case. For the special case of verifying
if v is preimage of the head vd of the chain, one can simply compute H(v) and compare
the result to vd. In this case, verification in constant time is possible. For our protocol,
we exclusively use this special case (see section 5.4.3). Revealing the last unrevealed
value, i.e. vd−1 at the first step, vd−2 at the second step, and so forth, is of particular
interest because:

(1) When revealing vj , a participant is still committed to all values vk | k < j.

(2) Verification can be done in constant time O(1).

On the contrary, revealing vk also reveals the commitments for all vj | j > k, as this
values can trivially be computed by (iteratively) applying the hash function H(·) to vk.
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5.3 Setup Phase

Based on the characteristics of hashchains as introduced in the previous section, we now
introduce a random beacon protocol. We distinguish two phases: setup and operation.
During the setup phase, each participant Pi performs the following steps:

(1) Generate a 256-bit random number si only known to Pi. This number is used as
the secret seed for the participant’s hashchain.

(2) Compute the value ci = Hd(si) where d is some large positive integer, e.g. d = 109.
We refer to ci as the head of the hashchain and to d as the length of the hashchain.

(3) Publish the value ci.

We assume that all participants agree on the set of values {c1, c2, ...cn} included in the
initial block.

After the above setup steps are performed, all participants have to further agree on
a random value R0, used as a starting point (seed) for the random beacon during
the operation phase. How R0 is selected has some important implications. Different
approaches are outlined in more detail in section 5.7. In the following, we assume the
ideal case of R0 being selected from the set {0, 1, . . . , 2256 − 1} uniformly at random.
The seed R0 becomes public knowledge only after the participants have agreed on the
commitments during the setup phase.

5.4 Operation Phase

After bootstrapping the random beacon in the setup phase, normal operation starts.
Based on an initial 256-bit value R0 and the inputs from the participants, the future
values of the random beacon R1, R2, R3 and so forth are derived.

We describe the protocol in a synchronous communication model. The operation phase
proceeds in rounds. The value of the random beacon R1 is the result of round 1, R2 is
the result of round 2 etc. In each round x, the following steps are performed:

(1) The leader Lx of round x is selected.

(2) The leader reveals the last preimage of his hashchain.

(3) All other participants verify the revealed preimage.

(4) Random beacon value Rx is derived from Rx−1 and the revealed preimage.

In the following subsections, we describe these steps in detail.
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5.4.1 Leader Selection

In each round x ≥ 1, the value of Rx−1 of the previous round is used to deterministically
select a unique leader Lx for this round. We denote the fact that Pi is the leader of
round x as L(i)

x , and define Lx directly based on a uniformly random selection among all
participants:

Lx = Pi ⇐⇒ Rx−1 ≡ i (mod n)

The set of potential leaders Lx for round x is equal to the set of all participants P, i.e.
the following condition holds:

∀x ≥ 1,Lx = P

This is a difference to the PVSS protocol described in chapter 6, where we restrict the
set of potential leaders.

5.4.2 Revealing Preimages

During the setup phase, each participant Pj has committed itself to a hashchain
〈H0(sj), H1(sj), ...,Hd(sj)〉 via publishing cj = Hd(sj). In particular, L(i)

x has done
so via publishing the commitment ci. In any round x, the round’s leader L(i)

x is in charge
of revealing the latest unrevealed preimage of ci. He has to publish Hd−γi(si), where
γi ≥ 1 denotes how many times it has already been selected as a leader (up to and
including round x). As before, d denotes the length of the hashchain.

Here, we do not consider the case of γi > d. In this case, L(i)
x is not able to calculate

Hd−γi(si). A finite amount of steps for the underlying hashchains, i.e. setting the
protocol parameter d to 109, is enough to ensure that this case is never encountered
for any practical purpose. As our tests showed, computing a hashchain of such length
during the setup phase is doable in less than 20 minutes on common hardware.2 It is very
unlikely that a participant ever encounters the situation, where no more preimages are
available. Consider the following example, in which the number of participants n = 1000,
d = 109 and a new random beacon value should be produced every 10 seconds. Here, the
expected duration for a participant Pj to be unable to compute Hd−γj (sj) when asked
to do so is given by:

n · d · 10 seconds = 1013 seconds

≈ 317098 years

5.4.3 Verification of Preimages

Any other participant Pj can easily verify if L(i)
x has revealed a valid preimage. This

verification only involves a single invocation of H(·) and, thus, can be computed in
2 The test was performed using the SHA2-256 algorithm from Python’s hashlib package running on a

2.3 GHz Intel® Core™ i5-5300.
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constant time. This is possible, because all Pj keep track of the latest valid commitments
for all participants. Each participant Pj stores a list of all hashchain heads 〈h1, h2, ..., hn〉.
The term hashchain head is used to refer to the last publicly-known valid value of
a participants hashchain. The list 〈h1, h2, ..., hn〉 is initialized with the commitments
〈c1, c2, ..., cn〉.

When a leader L(i)
x reveals a candidate preimage ρi of his hashchain head, Pj checks the

validity of ρi by verifying the condition H(ρi) = hi. If the condition holds, ρi is accepted
and hi is updated accordingly hi ← ρi. Otherwise, ρi is ignored and hi is not updated.

5.4.4 Obtaining the Next Random Beacon Value

The value Rx of the random beacon in round x can be calculated by each participant
based on Rx−1 and the preimage ρi of the rounds leader L(i)

x :

Rx = H(Rx−1 || ρi)

In case the current leader fails, the required preimage does not become available to
the participants. This is also the case if the leader is controlled by an attacker and
deliberately withholds the preimage. To prevent the protocol from stalling, we define the
value of next random beacon based on the previous one, if no preimage becomes available
a specific timeframe:

Rx = H(Rx−1)

We stress that this approach only works in the synchronous network setting and potentially
leads to biased randomness.
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5.5 Summary

In the following, algorithm 5.2 summarizes the hashchain-based approach of building
a random beacon from the perspective of a participant Pi. For n = 1000 participants
and a hashchain depth d = 109, the protocols is guaranteed to run for Ωmin = 109

rounds. As a randomly selected participant has to reveal his preimage at each round, the
expected number of rounds Ω until a participants runs out of available preimages is close
to Ωmax = n · d = 1012 rounds.

Algorithm 5.2: A Hashchain-based Random Beacon

Input:
• initial random seed R0
• the depth of the hashchains d
• a list of commitments 〈c1, c2, ..., cn〉
• participants i’s secret si

Output:
• random beacon values R1, R2, R3 and so forth

1 〈γ1, γ2, ..., γn〉 ← 〈0, 0, ..., 0〉
2 〈h1, h2, ..., hn〉 ← 〈c1, c2, . . . , cn〉
3 for x← 1 to Ω do
4 l← Rx−1 mod n
5 Lx ← Pl
6 if Lx = Pi then
7 γi ← γi + 1
8 Rx ← H(Rx−1 || Hd−γi(si))
9 broadcast Hd−γi(si)

10 yield return Rx
11 else
12 while ¬timeout do
13 if candidate preimage ρl from leader Lx received then
14 if H(ρl) = hj then
15 hj ← ρl
16 Rx ← H(Rx−1 || ρl)
17 yield return Rx
18 break

19 if Rx is still undefined then
20 Rx = H(Rx−1)
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5.6 Evaluation
In this section, we analyse the hashchain-based random beacon. We discuss various proto-
col aspects such as computation complexity, message complexity, as well as characteristics
of the resulting random beacon values like unpredictability and bias-resistance.

5.6.1 Computational Complexity

We distinguish the computational costs, which have to be performed only once during
the setup phase, and the computation, which has to be performed at each round.

Setup During the setup process, each participants has to construct a hashchain of
considerable length. This computation has to be performed only once and can be done
in less than 20 minutes on common hardware, for the hashchain length d = 109.

Operation – round’s leader During normal operation, the round’s leader L(i)
x has

to compute the preimage ρi of his current hashchain head hi. A naive approach is to
compute ρi based on the si directly, resulting in a complexity of O(d).

To improve the performance, participants store intermediate value of their hashchain
during the setup process. When storing the values si, H1000000(si), H2000000(i), . . . ,Hd(si),
Pi has to perform at most 999999 hashing operations to calculate any given intermediate
value of his hashchain. Such a calculation can be done in less than 1 second.

For d = 109, this approach requires only 1000 · 256 bit = 3.125 KB of storage. However,
participants might also store additional preimages, i.e. the preimages which need to be
revealed in the near future. This further reduces the computations which have to be
performed during operation.

Operation – verifier The computational effort required for verification is negligible.
A published preimage can be very easily verified by any participants. Only a single
invocation of the hash function H(·) is required. Thus, the computational complexity for
verification is given by O(1).

5.6.2 Communication Complexity

During each round x, the round’s leader L(i)
x has to broadcast a message containing his

next to reveal preimage ρi to all other participants. This results in O(n) messages. For
the verification process and for deriving the next value of the random beacon, no further
communication is required.

5.6.3 Predictability

By construction, the random beacon values are predictable to some extent. Clearly, a
round’s leader L(i)

x knows the preimage ρi required to calculate Rx. He can perform this
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calculation before publishing ρi and, thus, knows Rx before it becomes available to the
other participants.

In the following, we analyse how predictable the random beacon values indeed are. For
this analysis, we consider a set of n participants P = {P1, P2, ..., Pn}. An attacker controls
a subset A ⊂ P of at most f nodes, i.e. |A| = f . We assume byzantine behavior for all
nodes in A, i.e any node Ai ∈ A might arbitrarily deviate from the protocol. Further,
we do not distinguish between failed/offline nodes and attacker controlled nodes. The
parameter f includes failed/offline nodes.

We define the probability that the attacker can predict a future random beacon based
value on the parameter δ, which describes the number of steps to be predicted:

P ({Given Rx, Rx+δ is predictable})

Obviously, for δ = 0 we have:

P ({Given Rx, Rx+0 is predictable}) = 1

Prediction is possible in case a node controlled by the adversary is selected as leader.
Therefore for δ = 1 we obtain the probability:

P ({Given Rx, Rx+1 is predictable}) = P ({Lx+1 ∈ A})

Similarly, for δ = 2 we have:

P ({Given Rx, Rx+2 is predictable}) = P ({Lx+1 ∈ A} ∧ {Lx+2 ∈ A})

In the following, we assume that the attacker cannot influence the random beacon values.
The evaluation considering active manipulation of random beacon values is given in
section 5.6.5. Considering the assumption holds, the probabilities ∀w ≥ 1 are given by:

P ({Lw ∈ A}) = f/n

As the events {Lx+1 ∈ A}, {Lx+2 ∈ A}, . . . , {Lx+δ ∈ A} are independent, we can
obtain the probability of prediction as follows:

P ({Given Rx, Rx+δ is predictable})
= P ({Lx+1 ∈ A}) · P ({Lx+2 ∈ A}) · ... · P ({Lx+δ ∈ A})

=
δ∏
θ=1

P ({Lx+θ ∈ A})

=
δ∏
θ=1

f

n

=
(
f

n

)δ
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Figure 5.1 shows that the probability of an attacker, who controls f out of n nodes,
predicting δ future random beacon values decreases exponentially for increasing values of
δ and any value of f < 1.
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Figure 5.1: Probability of an attacker being able to predict a specific value of the
hashchain-based random beacon δ rounds before it is released

However, an attacker might not try to predict the random beacon value starting at a
specific round x but might try predicting δ random beacon values over a period of time,
i.e. starting the prediction at rounds x, x+ 1, x+ 2..., x+ τ . Considering such a scenario,
we are interested in the probability of a single successful prediction over different periods
of time. Assuming the independence of the events in regard to different starting points
we calculate:

P ({∃y ∈ {x, x+ 1, ..., x+ τ} | given Ry, Ry+δ is predictable}) = 1−
(

1−
(
f

n

)δ)τ

In the following, we analyse the probability that an attacker is able to predict the value of
the random beacon δ rounds into the future at least once over the period of 1) one day, 2)
one week, 3) one month and 4) one year. We assume that a new random beacon value is
produced every 10 seconds, leading to τ1 = 8640, τ2 = 60480, τ3 = 259200, τ4 = 3153600.
The results, still showing an exponentiation decrease in the probability of prediction, are
given in figure 5.2.
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Figure 5.2: Probability of an 33% attacker being able to predict at least one of the
hashchain-based random beacon values δ rounds before it is released, considering a
continuous prediction effort over different time periods

5.6.4 Bias-Resistance

In the previous section, we analyzed how a colluding passive attacker can predict future
values of the random beacon. Thus, we considered a passive attacker. In this section, we
consider an active attacker, who not only tries to predict future values of the random
beacon, but also actively takes actions to manipulate the beacon values in his favour.

As we discussed in section 5.4.2, a malicious participant selected as a leader L(a)
x for some

round x can always choose to:

(1) publish the next preimage ρa or

(2) withhold the value ρa.

We stress that it, however, cannot introduce arbitrary values into the system after the
setup phase due to the properties of the hashchains used.

Depending on his choice, Rx takes one of the values from {H(Rx−1 || ρa), H(Rx−1)}.
Therefore, at each round x, in which a participant Ai ∈ A is selected as leader, the
attacker can pick one out of two random values.

A simple attack strategy might be to maximize the probability of being selected as leader
again in the next round. We consider four cases at round x, where the leader Lx of the
particular round is controlled by the attacker.
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Let

i1 = H(Rx−1 || ρa) (mod n)
i2 = H(Rx−1) (mod n)

denote the two possible indices of the leader of the next round x + 1. Then, the four
cases are given by

(1) Pi1 ∈ A ∧ Pi2 ∈ A

(2) Pi1 ∈ A ∧ Pi2 6∈ A

(3) Pi1 6∈ A ∧ Pi2 ∈ A

(4) Pi1 6∈ A ∧ Pi2 6∈ A

The first three cases are favorable for the attacker. Only the fourth is unfavorable.
Combining this cases, we calculate the probability that another attacker controlled node
is selected as the next leader as follows:

P ({Lx+1 ∈ A} | {Lx ∈ A}) = 1− P ({Pi1 6∈ A} ∧ {Pi2 6∈ A})

= 1−
(

1− f

n

)
·
(

1− f

n

)
= 1−

(
1− f

n

)2

We get a lower bound on the probability that an attacker node is selected as a leader
P ({Lx ∈ A}) by iteratively applying the above formula using P ({L1 ∈ A}) = f/n as
starting point.

The process can also be described by the Markov chain given in figure 5.3 with α = f/n and
β = 1− (1− f/n)2. In this case, we look at the probability of being in the attacker state
SA. Figure 5.4 shows that resulting probabilities quickly converge to values significantly
larger than f/n within a few rounds, whereas table 5.1 gives the resulting probabilities in
comparison to the expected ones.

As Lx ∈ A directly implies the option to bias the resulting random beacon value Rx of
the respective round, figure 5.4 also gives the probability that an attacker controlling f
out of n nodes can manipulate a specific Rx.
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Figure 5.3: Markov chain, illustrating leader selection bias in the hashchain-based random
beacon protocol
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Figure 5.4: Influence of leader selection bias in the hashchain-based random beacon
protocol over time
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fraction of attacker nodes: f⁄n expected P ({Lx ∈ A}) actual P ({Lx ∈ A})

0.1 0.1 0.1099
0.25 0.25 0.3077
0.33 0.33 0.4237
0.5 0.5 0.6667
0.66 0.66 0.8510

Table 5.1: Comparison of the expected leader selection probability and the actual leader
selection probability under active manipulation for the hashchain-based random beacon
protocol

5.6.5 Predictability under Active Manipulation

In section 5.6.3, we assumed that the attacker does not / cannot influence the random
beacon values. As we have shown in section 5.6.4, an attacker can manipulate the random
beacon values to a certain degree and can consequently increase (i) the probability of
being selected as a leader and (ii) the likelihood of predicting future random beacon
values as shown in figure 5.4 and table 5.1. Figures 5.5 and 5.6 show the influence of the
random beacon on predictability comparing passive and manipulating attackers.
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Figure 5.5: Probabilities of passive and manipulating attackers being able to predict
specific values of the hashchain-based random beacon δ steps before they are released
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Figure 5.6: Probability of an 33% actively manipulating attacker being able to predict
at least one of the hashchain-based random beacon values δ rounds before it is released,
considering continuous prediction effort over different time periods

5.6.6 Forks

We only defined the hashchain-based random beacon protocol in a setting of synchronous
communication. Therefore, forks cannot arise. As soon as we weaken this property, an
attacker might publish his valid preimage ρa in a round, in which it controls the leader
L

(a)
x just before the end of the respective time slot. Due to network latency, parts of the

network receive ρa and compute Rx = H(Rx−1 || ρa), while other nodes do not receive ρa
in time and thus compute Rx = H(Rx−1). This consequently produces a fork in the chain
of random values. There is no protocol mechanism included that allows to resolve such a
situation. Therefore, the hashchain-based random beacon protocol without modifications
is not suitable for a setting of asynchronous communication.

5.7 Seed Selection
In the following, we describe and evaluate three different approaches for seed selection
and assess their practicability. The outcome of the seed selection process is a seed R0,
which is required after protocol setup. We consider the following approaches:

(1) Select a seed based on a mathematical constant such as π, i.e. define R0 to be
equal to the first 256 bits of the fractional part of π:

243f6a88 85a308d3 13198a2e 03707344

a4093822 299f31d0 082efa98 ec4e6c89

(2) Deterministically derive a random number from the set of commits {c1, c2, ...cn}.
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(3) Deterministically derive a random number from a publicly available source of
randomness such as a future Bitcoin block hash.

Fixed initial seed Approach (1) has the advantage of being very simple with the
drawback that an attacker can influence the first values of the random beacon. The
attacker Pa could send in his commitment ca at last. Using the knowledge from the other
commitments, the attacker can try a high (but computationally bounded) number of
different secrets sa to obtain favorable / biased value for ca.

As described in detail in the next 5.4.1, the random beacon values {R0, R1, R2, ...} are
used for leader selection. By carefully choosing the value ca with specific properties, an
attacker can ensure that it is selected as the leader for the first rounds. This gives the
attacker the advantage of knowing the first values of the random beacon before other
participants can obtain the values.

Even worse, a colluding attacker, i.e. an attacker who controls multiple participants
Pa1 , Pa2 , ..., Pat , can pick the corresponding commitments ca1 , ca2 , ..., can in a way that it
can predict the values R1, R2, ..., Rt with minor computational effort. A proof of concept
implementation for the attack is available in the appendix A.3.

Seed derived from the commitments Another quite simple alternative, which
eliminates some drawbacks of approach (1), is deriving R0 from the set of commitments
{c1, c2, ..., cn}. Here, n denotes the total number of participants. Let 〈c1′ , c2′ , ..., cn′〉
denote the list obtained by sorting {c1, c2, ..., cn}. Then, R0 is derived as follows:

R0 = H(c1′ || c2′ || ... || cn′)

Similar to approach (1), an attacker can try different values for his commitments. A
colluding attacker can select the commitments independent of each other. He is, therefore,
able to precompute a chain of random beacon values of at least t elements, where t
denotes the number of attackers. This is an important difference to approach (2). Here,
changing a single commitment directly influences the seed R0 and, thus, all future random
beacon values. Consequently the attack on approach (1) (see appendix A.3) does not
work in this case.

Still, an attacker can try different values for his commitment(s). By investing an
exponential amount of computational resources, it can however only precompute future
values of the random beacon a linear number of steps.

Seed derived from a publicly available source of randomness To address the
(already very limited) issues of the approach (2), one can choose to derive R0 from
a verifiable public source of randomness. We already described an approach, which
generates unbiased randomness with overwhelming probability in section 4.1.4. Although
the approach is very slow and resource intensive, it is valuable in the context of seed
selection, as the computation has to be performed only once in this case.
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CHAPTER 6
PVSS-based Random Beacon

In the previous section, we introduced a random beacon protocol based on hashchains. We
discussed the problem that an attacker can selectively reveal and withhold his preimages
to bias the generated random values. PVSS, as introduced in section 3.9, can be used
to address this issue. In the following, we describe a random beacon protocol, where
participants commit to secrets using Schoenmakers’ PVSS [20] instead of publishing
hashchain heads. The distribution of PVSS shares to the other participants in the system
then ensures that previously committed secrets are always revealed by a collaborating set
of honest participants. We assume an understanding of the principles of PVSS as well as
of the specifics of Schoenmakers’ PVSS protocol in this section. The required details on
PVSS and Schoenmakers’ approach are given in section 3.9.

6.1 Threat and Communication Model
We assume a fixed set of N participants denoted as P = {P1, P2, ..., PN}. Of these
participants, a set A = {A1, A2, ..., Af} ⊂ P of at most f members are considered
byzantine and may arbitrarily deviate from the protocol. For the sake of explanation,
we further introduce the notation of a dealer D ∈ P, and define P× = P \ {D} =
{P1, P2, ..., Pn}, where P× is used to refer to all nodes receiving PVSS shares from D.
Hence, we have N = n+ 1. Throughout the PVSS-based random beacon protocol, we
will use instances of (t, n) PVSS schemes, where the reconstruction threshold t = f + 1 is
selected in such a way that a colluding attacker, controlling the set of nodes A, can never
perform a reconstruction without participation of honest nodes since t > |A| holds. The
network model is synchronous and fully connected. Each participant has authenticated
message channels with all other participants and messages are delivered within some
time bound.
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6.2 Protocol Overview

In the following, we give an overview of our construction for our PVSS-based random
beacon protocol. Our protocol provides a fresh randomness value in discrete steps called
rounds. The first value R0 is agreed upon the setup process. In all further rounds, the
randomness of the previous round is used to select a leader, whose task it is to reveal a
value previously committed to. This value and the value of the random beacon of the
previous round get combined using a hash function to form the next random beacon
value.

We address the problem of withholding the committed values of a standard commit/reveal
approach, which uses cryptographic hashes. For that purpose, we require participants
to publish valid PVSS shares as part of all commitments they make. Under normal
operation the asked participants reveal their commitments. In case they fail or maliciously
withhold their values, the protocol achieves liveness by reconstructing the required values
via PVSS.

A key difference to existing PVSS-based protocols is that in our construction only a single
PVSS instance is run at each round. Consequently, less messages need to be exchanged
to produce a new random beacon value. Nevertheless, our construction ensures that the
produced randomness cannot be biased and is unpredictable after f + 1 rounds. Our
protocol further provides probabilistic guarantees for unpredictability of random beacon
values before waiting f + 1 rounds.

6.3 Setup Phase

We assume a trusted setup, in which the participants’ public keys, as well as a single
PVSS commitment for each participant are included in initial dataset B0. This data is
agreed upon by all participants.

PVSS commitment To generate his initial PVSS commitment, every participant, in
the following denoted by D, selects a randomly chosen secret s. Participant D then
follows the process of share generation and proving share correctness of the PVSS protocol
in the role of the dealer, generating shares for all other participants in P×. Following
Schoenmakers’ protocol, each dealer D does not actually share the value s but rather Gs.
The encrypted shares together with the non-interactive zero-knowledge (NIZK) proof of
share correctness form the PVSS commitment. We denote the PVSS commitment from
participant D to P× as Com(Gs):

Com(Gs) =
{
〈yp(1)

1 , y
p(2)
2 , ..., yp(n)

n 〉, 〈gs, gα1 , gα2 , ..., gαt−1〉,NIZK-proof
}

Here, G and g denote generators of the underlying group used in the PVSS protocol. The
polynomial p(·) with coefficients 〈s, α1, α2, ..., αt−1〉 is used for sharing s. The variables
yi are used to refer to the public keys of all participants Pi ∈ P× .
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6.4. Operation Phase

Initial random beacon value We additionally assume an agreed random seed R0 as
the first value of our random beacon. In section 5.7, we already described approaches on
how such a value might be obtained. We further assume that R0 is unbiased, selected
uniformly at random and becomes public knowledge only after each participant has
provided his initial PVSS commitment.

6.4 Operation Phase
The protocol proceeds in rounds. In each round x, a new random beacon value Rx is
produced. To give a general overview, this process consists of the following steps:

(1) Uniquely determining the rounds leader L(i)
x

(2) Obtaining the committed value Gsi corresponding to the PVSS commitment
Com(Gsi) from L

(i)
x via one of the following two options:

a) The leader L(i)
x publishes the committed value, together with a new PVSS

commitment, which L(i)
x constructs as the dealer.

b) The committed value is reconstructed by t+ 1 participants. This happens if
the leader fails or a malicious leader does not publish the required data on
purpose.

(3) Combining the random value from the previous round Rx−1 and the newly obtained
value Gsi to form Rx.

6.4.1 Leader Selection

In each round x ≥ 1, the randomness of the previous round Rx−1 determines the unique
leader Lx ∈ P of round x. We denote the fact that participant Pi is leader of round x as
L

(i)
x .

The random number Rx−1 is used to simulate a uniformly random selection of the round’s
leader, drawn from a set of potential leaders Lx ⊂ P. For the definition of this set,
we refer to the later section 6.4.5, because the definition requires the notion of random
beacon blocks, which have not yet been introduced.

Let 〈l0, l1..., l|Lx|−1〉 denote the ordered1 list of all participants from Lx. Then the round’s
leader Lx is defined as:

Lx = li ⇐⇒ Rx−1 ≡ i (mod |Lx|)

Notice that in our protocol, we do not elect a rounds leader but rather select one. The
round’s leader is derived in a deterministic fashion.

1 The ordering might be obtained based on the participants public keys.
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6. PVSS-based Random Beacon

6.4.2 Random Beacon Blocks

After a round’s leader L(i)
x is selected, it is his responsibility to produce and broadcast a

set of data, a so-called random beacon block Bx. We distinguish between three types of
random beacon blocks:

(1) the initial block B0, constructed during the setup phase,

(2) leader blocks, denoted by Bx (or B(i)
x , if we want to describe the fact that participant

Pi is the leader of round x producing this block), and

(3) recovered blocks, denoted by bx.

Random beacon blocks are chained in order to produce a verifiable stream of random
beacon values. Figure 6.1 gives an overview of the construction:

Figure 6.1: Overview of the PVSS-based random beacon

Leader blocks A leader block Bx is a data structure, which contains (at least) the
following parts:

(1) The round’s index: x

(2) The round’s random beacon value: Rx

(3) The hash of the previous leader block: H(Bx−u−1)
Here u ≥ 0 denotes the number of recovered blocks since the last leader block.

(4) A list of exactly u hashes of recovered blocks since the last leader block:
〈H(bx−u), H(bx−u+1, ...,H(bx−1)〉.

(5) The value si, corresponding to the leader’s last PVSS commitment Com(Gsi).

(6) The leader’s new PVSS commitment: Com(Gs̃i)

(7) The set of new PVSS commitments Cx from other participants, which have previ-
ously been recovered and consequently failed to provide a PVSS commitment. The
exact definition of Cx is given in section 6.4.5.
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(8) The blocks signature: σBx = signski (Bx)
Here, ski denotes the private key used by the leader L(i)

x to sign the block.

This data structure can be expanded to also include, for example, proofs of malicious
behavior (see sections 6.4.3 and 6.4.5).

Recovered blocks In case a round’s leader L(i)
x is offline or does not provide a valid

leader block on purpose, any coalition of at least t participants is able to construct a
recovered block bx for this round. A recovered block bx contains the following parts:

(1) The round’s index: x

(2) The round’s random beacon value: Rx

(3) A list of t decrypted shares corresponding to the leader’s last PVSS commitment
Com(Gsi)

(4) A list of t NIZK correctness proofs for share decryption

Block hashes We define the hash of a block depending on the block type. For a
leader block Bx, we compute H(Bx) based on all the data in Bx, i.e. the round’s index
x, the random beacon value Rx, ..., the signature σBx . For recovered blocks bx, we
define H(bx) = H(〈x,Rx〉). By doing so we deliberately omit the decrypted shares and
correctness proofs, or references to previous blocks when computing a recovered block’s
hash. Therefore, reconstruction by any set of t participants leads to the same block hash.
We stress that block hashes are only used for referring to previous blocks, but do not
influence the random beacon values in any way.

6.4.3 Generating Leader Blocks

Depending on whether the leader is malicious or not, i.e. Lx ∈ A or Lx 6∈ A, the leader
might deviate from the protocol. An honest leader L(i)

x 6∈ A performs the following steps
to produce leader block Bx:

(1) If u > 0, verify the last u recovered blocks bx−u, bx−u+1, ..., bx−1 .

(2) Verify the last leader block Bx−u−1.

(3) Calculate Rx = H(Rx−1 || Gsi)

(4) Select a new random value s̃i and generate a new PVSS commitment Com(Gs̃i).

(5) Construct the new block Bx and sign the block with the long term private key ski.
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6. PVSS-based Random Beacon

Honest participants only construct and sign a single block Bx per round x. This block
is referring to a single valid leader block Bx−u−1, and potentially to a single recovered
block per round since Bx−u−1.

It is however possible that Bx can be constructed in different ways. Such a situation can
arise in the following cases:

(1) A malicious leader Lx−u−1 ∈ A distributes various alternatives, but otherwise valid
leader blocks e.g. Bx−u−1, B′x−u−1, B′′x−u−1.

(2) Assume that Bv is the last valid leader block known by L(i)
x , and L(i)

x knows a valid
recovered block bv for the same round v. Then, L(i)

x has to decide either to include
a reference to Bv or to bv.2

In case, there are multiple choices for the previous leader Bx−u−1, there are various
solutions to resolve the conflict. The simplest solution is an honest leader L(i)

x picking one
of the candidates at random. As an alternative, L(i)

x could refer to all candidate blocks
and, therefore, provide a proof of malicious behavior. As a consequence, the malicious
actor, i.e. the participant who published Bx−u−1 and B′x−u−1, could be removed from
the set of potential leaders for all future rounds.

6.4.4 Generating Recovered Blocks

In case a round’s leader L(i)
x fails or does not provide the leader block Bx on purpose,

the recovered block bx is constructed. Any subset of at least t (honest) participants
is able to produce a recovered block bx collectively. While there might be multiple
different recovered blocks for the same round x, the included randomness is equal and
not dependent on the specific subset of participants, who have generated the block.

From the perspective of any single participant Pj 6= L
(i)
x , the process takes one of two

paths depending on whether Pj receives a leader block Bx before a timeout occurs. If
such a block arrives at Pi in time, Pi does not participate in producing bx but rather
distributes Bx instead. The timeout is selected in such a way that leaders have enough
time to generate and distribute Bx during normal operation. In case Pi does not receive
a leader block Bx in time, it participates in the construction of bx, which consists of the
following steps:

(1) Broadcast the decrypted secret share Gp(j) corresponding to the leader’s last PVSS
commitment Com(Gsi) together with the share’s NIZK correctness proof.

(2) Wait until t− 1 valid decrypted secret shares Gp(k) | k 6= j, broadcasted by other
participants, arrive.

2 Strictly speaking this situation cannot occur in the assumed synchronous communication setting,
but is important when using considering partially-synchronous or asynchronous communication.
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(3) Reconstruct the shared secret Gsi via Lagrange interpolation using the set of shares
{Gp(j), Gp(k1), Gp(k2), ..., Gp(kt−1)}.

(4) Calculate Rx = H(Rx−1 || Gsi).

(5) Construct bx based on the values of x, Rx, the set of shares and their NIZK
correctness proofs.

6.4.5 Potential Leaders

In this section, we give the full definition concerning participants which might be selected
as leader for some round x, i.e. the definition of the set of potential leaders Lx.

We restrict the set Lx to exclude participants {Lx−1, Lx−2, ..., Lx−f}, which have been
leaders in one of the previous f rounds. If a participant is selected as a leader for some
round x, it cannot be selected during the rounds x+ 1, x+ 2, ..., x+ f . This ensures that
in any period of f + 1 rounds at least one honest leader is selected.

Further, we can only select a participant Pi as a leader for round x, if Pi has previously
submitted an unused PVSS commitment. Under no circumstances is a node selected as
leader, which has not provided a PVSS commitment. Under normal operation, honest
nodes always submit such PVSS commitments as part of their leader blocks. However, in
case Pi fails and the corresponding secret was reconstructed, the new PVSS commitment
Com(Gs̃i) of Pi is missing. As soon as Pi is online again, the node broadcasts the missing
commitment, which is included in some later block By. After f rounds, Pi can again be
selected as leader, i.e. y+ f < x must hold. Using this idea, we define the set of available
commitments Cx at round x as follows:

(1) Initially, C0 is the set of all commitments provided during the setup phase.

(2) In every round x ≥ 1, in which some node Pi is selected as leader, the corresponding
commitment Com(Gsi) is revealed and, therefore, excluded. In case a leader block
Bx is available, Pi’s new commitment Com(Gs̃i) is included. Additionally, leader
blocks provide a set of new commitments Cx from other participants Pj , which
failed to produce a leader block previously:

Cx = {Com(G ˜sj1 ), Com(G ˜sj2 ), ... | Com(Gsj ) 6∈ Cx−1}

The set Cx can only include new commitments Com(Gs̃j ) from participants Pj
which do not already have a commitment Com(Gsj ) in Cx−1.
Using Cx, we obtain the definition of the set of available commitments Cx for rounds
x > 0 as follows:

Cx =
{

(Cx−1 \ {Com(Gsi)}) ∪ {Com(Gs̃i)} ∪ Cx leader block Bx is available
Cx−1 \ {Com(Gsi)} otherwise
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We give the full definition of the set of potential leaders Lx based on the conditions
required. A participant Pi is part of Lx if, and only if, all of the following conditions
hold:

(1) The participant Pi was not leader during the last f rounds:

Pi 6∈ {Lx−1, Lx−2, ..., Lx−f}

(2) The participant Pi has provided a new PVSS commitment in time:

Com(Gsi) ∈ Cx−f−1

Therefore, Lx is given by:

Lx = {Pi ∈ P | Com(Gsi) ∈ Cx−f−1} \ {Lx−1, Lx−2, ..., Lx−f}

An additional condition applies if we want to consider excluding participants, which have
provably shown malicious behavior:

(3) The produced block Bx does not include a (recursive) reference to any block, which
proves malicious behavior of participant Pi.

6.5 Verification
The verification process can be performed by any participant Pi ∈ P or any other third
party with access to the public keys and commitments given in the initial block B0. By
definition, we consider the block B0 as valid.

In the following, we describe the verification procedure for a leader block Bx. We denote
the last known valid leader block, referred to by Bx, as Bx−u−1. The number u ≥ 0
describes the number of recovered blocks bx−u, bx−u+1, ..., bx−1 given in Bx. The following
list summarizes all steps required to verify Bx:

(1) Check if Bx includes the correct round index x.

(2) Check if Bx contains the hash of the valid previous leader block Bx−u−1 with round
index x− u− 1.
(subsection 6.5.1)

(3) Check if Bx contains a list of exactly u hashes 〈H(bx−u), H(bx−u+1, ...,H(bx−1)〉 of
valid previous recovered blocks bx−u, bx−u+1, ..., bx−1.
(subsection 6.5.1)

(4) Check if Bx contains a valid random beacon value Rx.
(subsection 6.5.2)

82



6.5. Verification

(5) Check if Bx includes a valid value si, corresponding to the last commitment
Com(Gsi) of L(i)

x .
(subsection 6.5.2)

(6) Check if Bx includes a new valid PVSS commitment Com(Gs′i) of L(i)
x

(subsection 6.5.3)

(7) Check if the blocks signature σBx−1 is valid and produced by the round’s leader
L

(i)
x . The required public key pki used for signature verification is given as part of

protocol setup.

6.5.1 Verification of Recovered Blocks

In case a leader L(i)
x failed to produce a leader block Bx, the proposed recovered block

bx can be verified, given a valid key block Bx−1. Using Bx−1, we can derive the leader
L

(i)
x and the leader’s last unrevealed commitment Com(Gsi). A verifier can then check

whether the NIZK share decryption proofs given in bx are indeed valid in regard to the
last PVSS commitment Com(Gsi) of the rounds leader L(i)

x . If any of the proofs are
invalid, bx is invalid and the verification process terminates.

Otherwise, a verifier can obtain the value Gsi via Lagrange interpolation, following the
reconstruction protocol of the underlying PVSS scheme, as given in section 3.9. Based
on Gsi and Rx−1, a verifier can compute Rx = H(Rx−1 || Gsi) by itself and compare the
result to the value given in bx.

Based on the validity of Bx−1 and bx, a verifier can check the validity of the next recovered
block bx+1 using the same verification procedure, which can iteratively be applied to
show the validity of the recovered blocks bx+2, ..., bx+u.

6.5.2 Verification of Random Beacon Values

In the following, we give the details for the verification of random beacon values. We
recall how Rx is obtained: Rx = H(Rx−1 || Gsi), where Com(Gsi) refers to the PVSS
commitment of the round’s leader L(i)

x . The value Rx is verified by recalculating Rx
based on Gsi and the already verified value of Rx−1.

If si is not included in Bx, the verification fails and terminates. Otherwise, si is checked
for correctness by evaluating whether the condition gsi = C0 holds. Notice that the value
C0 was previously submitted as part of the corresponding PVSS commitment Com(Gsi).
If gsi 6= C0, the block Bx is invalid and the verification process terminates. Otherwise, si
is valid and Gsi can be obtained directly.

Based on Gsi , a verifier can recalculate Rx and compare the result with the value given
in Bx. The verification algorithm rejects Bx if the values of Rx do not match.
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6.5.3 Verification of PVSS Commitments

To verify whether the new PVSS commitment Com(Gs′i) provided by L(i)
x in the leader

block Bx is valid, a verifier performs the steps for verification of the underlying PVSS
scheme. The steps for Schoenmakers’ PVSS are described in detail in section 3.9.

6.6 Evaluation
In this section, we analyse our PVSS-based random beacon protocol. We evaluate and
describe the characteristic properties our protocol achieves and outline computation
complexity, communication costs, as well as liveness, unpredictability and bias-resistance
guarantees.

6.6.1 Computational Complexity

Following the same evaluation approach as introduced in section 5.6.1, we distinguish the
computational costs performed only once during the setup phase and the computational
costs performed at each round. The exponentiations / point multiplications in the
underlying group Gq of Schoenmakers’ PVSS scheme are the computationally most
expensive part.

Setup During the setup process, each participant has to provide a PVSS commitment
via Schoenmakers’ PVSS. In this case, the number of exponentiations, which have to be
performed during share distribution, are bounded by O(n).

Verification of a PVSS commitment can be accomplished in O(n · t) time. However,
each participant has to verify n commitments from all other participants. This leads to
verification costs of O(n2 · t) for each participant. During the setup phase, the amount
of time required for verification is not critical. For larger n however, the complexity
can be reduced to O(n2) by using Scrape’s optimization [19] of Schoenmakers’ PVSS, as
described in section 4.6.

Operation – round’s leader During the normal operation of the protocol, the round’s
leader has to provide a new PVSS commitment. Similar to the setup phase, this can be
accomplished using O(n) exponentiations.

Operation – verification The leader’s PVSS commitment has to be verified. For this
purpose each participant needs to perform O(n · t) computations. Again using Scrape’s
optimization, this number can be reduced to O(n).

Operation – reconstruction In case a leader fails, his last shared secret has to be
recovered. The computations required for reconstruction are bounded by O(t).
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6.6.2 Communication Complexity

During normal operation in each round x, the round’s leader broadcasts a single message:
the leader block Bx. In case a leader fails or withholds Bx on purpose, the other
participants have to exchange O(n2) messages to distribute the secret shares in order to
produce the recovered block bx. In both cases, communication complexity in comparison
to existing PVSS-based protocol, which requires n PVSS-instances to produce a random
beacon value, is reduced from O(n3) to O(n2).

Figure 6.2 shows the total amount of data transmitted in the network. We assume an
adversary controlling up to one third of the nodes in the network and that Schoenmakers’
PVSS is implemented via 256 bit elliptic curves. Additional details on the message size
calculation and the communication complexity of existing PVSS-based random beacon
protocols, are given in section 4.4.3.

For better comparison with the previous evaluation given in figure 4.1, we still use
the categories commit, recover and reveal in figure 6.2. The categories commit and
reveal combined correspond to communication required for distributing the leader blocks,
whereas communication in regard to recovered blocks is covered by the category recover.
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Figure 6.2: Total amount of communication required for our PVSS-based random beacon
protocol, assuming an adversary controlling up to 33% of the nodes

A full comparison with existing protocols is given in figure 8.1.
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6.6.3 Availability / Liveness

Liveness is ensured as the protocol makes progress in each round. Honest leaders always
reveal their values in time, whereas malicious leaders, which withhold their committed
values to effect liveness, can always be reconstructed by honest participants. In both
cases, the protocol progresses.

6.6.4 Public-Verifiablility

With access to the initial setup data (e.g. R0, the PVSS commitment and public keys of
the participants), any third party can verify the chain of random beacon values R1, R2, R3
and so forth. Values published by the round leaders can directly be checked against their
respective PVSS commitments, whereas a shared secret obtained by reconstruction can be
verified by checking the respective NIZK proofs for the shares of the secret. The detailed
steps required for verification are given in section 6.5. As we discuss in section 6.6.7,
forks in the chain of blocks are resolved before the randomness is effected. Consequently,
there is one and only one valid value for the random beacon at each round x.

6.6.5 Unpredictability

Similar to the hashchain-based random beacon introduced in chapter 5, the PVSS-based
random beacon is also predictable to some extent. Consider the following scenario, in
which all participants know the broadcasted random beacon value Rx for some round
x. Then, a sequence of malicious leaders {Lx+1, Lx+2, ..., Lx+δ} ⊆ A is selected. Clearly,
Rx+δ is known by the attacker at round x.

We define the corresponding probability as follows:

P ({Given Rx, Rx+δ is predictable})

Unpredictability for δ > f For any δ > f , where f denotes the number of malicious
participants, this probability is zero, because the leader selection algorithm prohibits that
a participant can be selected twice as a leader during f + 1 rounds. As a consequence, at
least one honest participants is leader during f + 1 rounds and, thus, Rx+δ | δ > f is
unpredictable per definition.

Probabilistic unpredictability guarantees for δ ≤ f For δ ≤ f , we still have the
probabilistic guarantees for unpredictability equivalent to the guarantees provided by the
hashchain-based beacon:

P ({Given Rx, Rx+δ is predictable}) =
(
f

N

)δ

The corresponding values are given in figure 6.3.
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Figure 6.3: Probabilistic guarantees for PVSS-beacon unpredictability – the chart gives
the probability of an attacker being able to predict a specific value of the PVSS-based
random beacon value δ steps before it is released

6.6.6 Bias-Resistance

In contrast to the hashchain-based approach, the PVSS-based random beacon has very
strong bias-resistance. The only points in time when an attacker could try to influence
random beacon values is when one of the malicious nodes is selected as leader. Let x+ 1
denote one such round. In this case, the attacker might choose which and how many
leader blocks it should publish at round x+ 1. Independent of his decision, the decision
can only influence the random beacon value f + 1 rounds after the decision was made.
Round x + f + 2 is the earliest point in time where Lx might potentially be selected
as leader again. As discussed in the previous section, Rx+f+1 is unpredictable by the
attacker. Therefore, the attacker can only blindly decide which decision to take. He does
not know in which way it influences Rx+f+2 at the time x+ 1 the decision is made.

Given that an attacker cannot influence the random beacon values, it cannot influence
the probability of being selected as leader. This follows directly from the process of leader
selection, which only depends on the produced randomness. Similar to the figure 5.3
provided for the hashchain-based approach in chapter 5, figure 6.4 gives the Markov Chain
for the state transitions between honest and malicious leader states. The probability α is
given by α = f/N.
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Figure 6.4: Markov chain, illustrating the unbiasability for leader selection in the PVSS-
based random beacon protocol

6.6.7 Forks

Similar to blockchains like Bitcoin, we consider forks in the chain of random beacon
blocks. A fork of the random beacon blocks in our case means that part of the nodes
assume that a block Bx or bx is the last random beacon block, while other nodes perceive
B′x or b′x as the last block.

Honest leaders We distinguish two cases depending on whether or not the leader Lx
is honest. In case Lx is honest, it timely publishes a single valid leader block Bx, which
is received by all other nodes within some fixed time bound. Honest nodes never start
to build a recovered block until the time bound is reached. Malicious nodes also fail
to produce a valid recovered block, as the participation of at least one honest node is
required to produce such a block. Consequently, there is one, and only one, candidate
block Bx for round x. As Bx only includes a single reference to a block at height x− 1,
eventual forks at round x− 1 get resolved.

Byzantine leaders A byzantine leader Lx can timely send different (valid) blocks Bx,
B′x or B′′x to the participants instead of broadcasting the same block Bx to all participants.
The adversary might also send blocks just before the time bound ends. As a result, some
nodes consider the received block, while others start to reconstruct. Honest nodes never
participant in a reconstruction at round x if they have received a valid leader block Bx.
They instead just forward the leader block. However, the reconstruction might still be
successful and various participants could potentially have different opinions on the last
block, e.g. Bx, B′x, B′′x, bx, b′x or b′′x. The randomness Rx in all of the valid candidates is,
however, equal by construction and the fork is automatically resolved as soon as an honest
leader is selected. Therefore, for the selection of an honest leader, the same guarantees
as for unpredictability hold. In the worst case, the fork is resolved after f + 1 rounds.
During this at most f rounds where the state diverges, the randomness is nevertheless
the same, as new commitments can only affect the randomness after at least f + 1 rounds.
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CHAPTER 7
Protocol Extensions

The previously described PVSS-based random beacon protocol improves the amount
of data, which need to be exchanged by the participants for producing a sequence of
random beacon values to O(n2). In our protocol, only one participant runs a single
PVSS instance in each round. This is a notable difference to other PVSS-based protocols
such as Ouroboros [12] or Scrape [19], where each participant runs the PVSS protocol as
the dealer, resulting in a communication complexity of to O(n3).

Although the amount of communication required could already be reduced by a factor
of n, the resulting message complexity could still be too high for systems with a large
number of participants. To further optimize our protocol for such a scenario, we describe
two extensions of our protocol in the following sections. While Quorum Share Distribution
given in section 7.1 explicitly focuses on improving scalability of the protocol, our second
extension Chained PVSS Commitments, discussed in section 7.2, integrates advantages
of our hashchain-based protocol into the PVSS protocol.

7.1 Quorum Share Distribution
To further optimize the protocol in terms of communication complexity, which is in
particular important as the number of participants N increase, we introduce a concept
called quorum share distribution. The aim of this concept is to reduce the number
of participants receiving shares as well as the number of participants which need to
collaborate for reconstruction. We directly describe the approach in the context of our
PVSS-based random beacon protocol. However, the general concept – i.e. performing
certain operations only in a randomly selected quorum instead of the set of all participants,
while still preserving strong probabilistic guarantees – is applicable to a much wider set
of applications. Other existing approaches Algorand [17], Dfinity [58] and RandHound /
RandHerd [18] have also used this general idea. Their constructions however use quite
different approaches.
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7.1.1 Construction Overview

In the PVSS-based random beacon protocol described in chapter 6, the participants
commit themselves to values which are revealed in the future. Each participant Pi
publishes n shares for his secret value si as part of his PVSS commitment Com(Gsi).
That is one share for each other participant. In case a participant fails to reveal or
maliciously withholds the shared secret, an honest group of at least t participants can
reconstruct the shared value.

When using this protocol extension, each time a participant commits to a value, the
corresponding PVSS shares are only generated for a subset of all participants. We use the
term quorum to refer to such subsets, which are denoted by the letter Q. The number of
participants in a quorum Q is referred to as the quorum size qs. The number of quorum
member required for a successful reconstruction is denoted as the quorum threshold qt.
All secret sharing operations previously used a (t, n) PVSS scheme. One participant acts
as the dealer, while the n other participants receive shares. In the extended protocol, a
(qt, qs) PVSS scheme with different participants receiving shares at each invocation is
run instead.

The quorum is dynamically selected based on the value of the random beacon. It changes
every round. We are using Qx to refer to the specific quorum of round x. The detailed
process of selecting quorum members is given in section 7.1.2. We discuss how the
extended protocol achieves liveness as well as unpredictability of the sequence of random
beacon values in the sections 7.1.3 and 7.1.4. Both characteristics are ensured by carefully
selecting the size qs and reconstruction threshold qt for the quorum. The selection process
these parameters is specified in sections 7.1.6 and 7.1.7. We further evaluate the benefits
the protocol extension provides for scalability in section 7.1.8.

7.1.2 Quorum Selection

The value of the random beacon itself is used to select a quorum for share distribution at
each round. We describe the approach for the operation phase, but it can, in a similar
manner, also be used during the initial setup process.

Consider the following scenario: The leader L(i)
x of round x publishes a valid leader block

Bx. As part of his block, it is required to publish a new PVSS commitment Com(Gs′).
To perform this task, it runs a PVSS protocol as the dealer generating shares for all
participants in the quorum Qx. The round’s quorum Qx is derived from the round’s
random beacon value Rx as follows:

(1) Assign each other participant Pj 6= L
(i)
x a score scoreRx(Pj) = H(Rx || pkj). Here,

the public key pkj is used to uniquely identify a node Pj .

(2) Create a score-ordered list of those participants 〈Pj1 , Pj2 , ..., Pjn〉 with scoreRx(Pj1)
being the smallest score.

(3) Select the lowest qs scoring participants 〈Pj1 , Pj2 , ..., Pjqs 〉 as Qx.
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The above approach has complexity O(n log n), as step (2) requires the sorting of list of
length n. In case the number of participants is very high and the computational overhead
becomes a problem, the approach given in algorithm 7.1 might be used instead. In this
case, the computation complexity can be lowered to O(qs).

Algorithm 7.1: Optimized Quorum Selection

Input:
• the canonical representation of the set of all participants: 〈P0, P1, ..., Pn〉
• the quorum size parameter qs
• the round’s random beacon value Rx
• the round’s leader L(i)

x

Output:
• the set of participants forming the quorum Qx

1 Qx ← {}
2 k ← 0
3 while |Qx| < qs do
4 l← H(Rx || k) (mod N)
5 if l 6= i then
6 Qx ← Qx ∪ {Pl}
7 k ← k + 1
8 return Qx

7.1.3 Availability / Liveness

Without the protocol extension, protocol progress was ensured as long as the number
of honest participants is greater than the PVSS reconstruction threshold t. If we define
t = f + 1 and N = 3f + 1, the set of participants, which need to collaborate during
reconstruction, is potentially large. This leads to a high amount of data transfer, as
the message complexity for reconstruction without the protocol extension is O(n2). To
lower this communication complexity, we replace the strong liveness guarantees of the
original protocol with a probabilistic guarantee, which still ensures liveness with very
high probability.

The protocol parameter pmax-stalling The maximum probability of stalling at some
round is a given by the protocol parameter pmax-stalling. Following J. Chen and S. Micali,
who considered 10−12 as acceptable failure probability for their Algorand protocol [17],
we also set pmax-stalling = 10−12. The expected time until the protocol stalls is then given
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by:

1
pmax-stalling

· beacon-interval

This number is ≈ 317000 years, if a random beacon value is produced every 10 seconds.

Liveness and protocol stalls The protocol is called alive as long as it is able to
produce new values for the random beacon. Otherwise, the protocols stalls. In each
round, the protocol is alive if, and only if, one of the following conditions hold:

• The round’s leader reveals a valid preimage as part of the corresponding leader
block.

• A valid preimage is reconstructed by (honest) participants.

It stalls if, and only if, a (malicious) round leader withholds his preimage and, in addition,
the other participants are not able to reconstruct.

Honest and byzantine leaders Honest (online) participants always distribute their
leader block to all nodes when they are required to do so. Malicious participants
might withhold their blocks, requiring a reconstruction by honest (online) participants.
Following our definition of byzantine nodes, we assume all honest participants are online.
Without loss of generality, offline nodes can be considered by increasing the fraction of
malicious nodes. As before, we denote the set of f byzantine nodes by A. Consequently,
the probabilities that a leader Lx at some round x is honest or byzantine are given as
follows:

P ({Lx 6∈ A}) = N − f
N

P ({Lx ∈ A}) = f

N

Ensuring liveness in case of byzantine leaders Whether or not Lx is byzantine,
Lx had to provide a PVSS commitment at some previous round w in order to be selected
as leader in round x. In case Lx is byzantine, protocol liveness is ensured if the members
of the corresponding quorum Qw are able to reconstruct the committed value. This
is possible if the number of honest nodes in the quorum Qw matches or exceeded the
reconstruction threshold qt, i.e. if the condition |Qw \ A| ≥ qt holds. As Qw was randomly
selected, we can use the hypergeometric distribution to obtain the probability that the
honest participants in Qw are able to perform the reconstruction:

P ({reconstruction possible}) =
qs∑
q=qt

h(q;N,N − f, qs)
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7.1. Quorum Share Distribution

Here, h(k;M,K,m) denotes the probability mass function of the hypergeometric distri-
bution with population size M , K good elements in the population, sample size m and k
observed good draws.

h(k;M,K,m) =

(
M

K

)(
M −K
m− k

)
(
M

m

)

Likelihood of protocols stalls Combining the two scenarios of honest leaders, in
which liveness is ensured by definition, and the case of byzantine leaders, where a
reconstruction is required, we can obtain the probability of a liveness failure.

P ({stalling}) = 1− P (¬{stalling})

P ({stalling}) = 1−
(
N − f
N

+ f

N
·
qs∑
q=qt

h(q;N,N − f, qs)
)

By appropriately selecting the parameter qs and qt, we ensure that this probability,
denoted by P ({stalling}), is always lower than the maximum expected failure probability
given by the parameter pmax-stalling.

7.1.4 Unpredictability

By design, our random beacon protocol ensures unpredictability over time. In particular,
the protocol without the extension of Quorum Share Distribution achieves unpredictability
of random beacon values after f + 1 rounds. In addition, the protocol provides a
probabilistic unpredictability guarantee for random beacon values less than f + 1 rounds
in the future. In the extended protocol, we only want to ensure this probabilistic
guarantee.

Unpredictability of the original PVSS-based random beacon protocol recon-
sidered Assume the random beacon protocol is at some intermediary state in round x. A
(colluding) attacker, who is selected as leader for the consecutive rounds x+1, x+2, ..., x+δ,
is able to precompute (i.e. predict) Rx+δ, the value of the random beacon δ before it
is released. Fortunately, the probability of prediction for the PVSS-based protocol, as
described in section 6.6.5, decreases exponentially with δ. In a scenario in which at most
f out of N participants act malicious, the probability is given by:

P ({Given Rx, Rx+δ is predictable}) =
(
f

N

)δ

An upper bound pmax-predictable = 10−12, given as protocol parameter, is reached after
δ = 25 rounds, assuming the attacker controls one third of the nodes. Figure 7.1 shows
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the minimum number of rounds δ required for the probability P ({Given Rx, Rx+δ}) to be
lower than the specified bound pmax-predictable, considering different fractions of attacker
nodes.
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Figure 7.1: Minimal values for the quorum parameter δmin to achieve the desired
predictability upper bound of 10−12

The values given in figure 7.1 are the minimum values, considering the original PVSS-
based random beacon without the protocol extension. Therefore, we can only aim to
find combinations of working quorum parameters qs and qt for δ∗ ≥ δmin.

Unpredictability in the extended protocol An attacker is able to predict the
values of the random beacon δ steps before they are released if, and only if, it can
compute all intermediate steps without participation of honest nodes. He can compute a
single step in case it is selected as a leader for the respective round, or if it is able to
reconstruct the shared secret. This is an important difference to the protocol in chapter
6, as reconstruction was previously only possible with participation of honest nodes.
Despite the change, the resulting probability still falls exponentially with increasing
values of δ. It is calculated via the hypergeometric distrubution in a quite similar manner
as previously described for the probability of protocol failures:

P ({Given Rx, Rx+δ is predictable}) =

P ({predictable}) =
(
f

N
+ N − f

N
·
qs∑
q=qt

h(q;N, f, qs)
)δ

As with protocol failure, the selection of the parameters qs and qt ensures that the
condition P ({Given Rx, Rx+δ is predictable}) ≤ pmax-predictable holds.
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7.1.5 Bias-Resistance

Bias resistance is ensured in a very similar way compared to the original protocol (see
section 6.6.6). We however cannot provide bias-resistance with absolute certainty, as this
property crucially relies on the unpredictability of the random beacon values. Without the
protocol extension, both properties are a consequence of the leader election mechanism,
which ensures that at least one honest node introduces a unpredictable value into the
sequence of random beacon values after at least f + 1 rounds. As any new introduced
commitment can only influence random beacon values after f rounds but the value at
this point cannot be predicted, bias-resistance is ensured.

For the extended protocol, we can ensure unpredictability with very high probability after
δ∗ rounds. To also ensure bias-resistance with near absolute certainty, we require that
the number of rounds ζ, until the same participant can be selected as a leader again, is at
least δ∗. For typical numbers of participants, the above property is already given, because
ζ corresponds to f , i.e. ζ = f in the original description, and is much greater than δ∗.
We define any value ≥ δ∗ as the protocol parameter ζ and obtain the corresponding
probability of a bias-resistance failure similar to the probability of predictability given in
section 7.1.4:

P ({bias-resistance failure})
= P ({Given Rx, Rx+ζ is predictable} ∧ {Lx+1 = Lx+ζ+1})

=
(
f

N
+ N − f

N
·
qs∑
q=qt

h(q;N, f, qs)
)ζ
· 1
N

The set of potential leaders, given in section 6.4.5, is adapted to exclude the last ζ leaders
instead of the last f leaders. For the above probability, the condition

P ({bias-resistance failure}) ≤ pmax-predictable

is automatically ensured by setting ζ ≥ δ∗. Additional measures to protect against
biasing random beacon values as well as to detect malicious behavior are presented in
section 7.2.

7.1.6 Quorum Parameters

The parameters qs and qt are selected in such a way that actual protocol stalling
and prediction probabilities, denoted as P ({stalling}) and P ({predictable}) for short,
are lower than their given parameters pmax-stalling and pmax-predictable. The definition
for P ({stalling}) and P ({predictable}) are given in sections 7.1.3 and 7.1.4. Before
describing how the actual values for the quorum parameter qs and qt are selected to
ensure that maximum protocol stalling and predictability guarantees can be met, we
summarize the parameters on which qs and qt depend:

(1) The total number of participants N .
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(2) The upper bound for malicious participants f .

(3) The protocol stalling probability pmax-stalling = 10−12.

(4) The protocol prediction probability pmax-predictable = 10−12.

(5) The number of rounds δ∗ ≥ δmin for which the upper bound for predictability
should hold:

P ({Given Rx, Rx+δ∗ is predictable}) ≤ pmax-predictable

Effects of changing the parameters qs and qt In the following, we introduce the
effects of changing qs and qt in an intuitive manner:

(1) Increasing qs, static qt: As shares are distributed to more participants, P ({stalling})
decreases. P ({predictable}) rises as shares are potentially distributed to more
(colluding) attackers.

(2) Static qs, increasing qt: The collaboration of more participants is required for
reconstruction, therefore P ({stalling}) increases. However, a higher number of
colluding attackers is also required to reconstruct, thus P ({predictable}) decreases.

7.1.7 Optimizing Quorum Parameters

In the following, we present the algorithm, which is used to derive suitable quorum
parameters qs and qt. The algorithm aims to find a sweet spot between the two effects
described above. Using a naive approach, the computation time required to evaluate the
actual probabilities for larger values of N and f increases rapidly. Therefore, we present
an optimized algorithm to find the best possible parameters based on the idea that if
some values for qs and qt fulfill both the requirement for unpredictability as well as for
protocol liveness, there is no need to check for any q′t > qt for the same qs:

P ({stalling})[qs, qt] > pmax-stalling

=⇒ ∀q′t > qt : P ({stalling})[qs, q′t] > pmax-stalling

This reduces the number of parameters to check. Algorithm 7.2 gives the detailed
approach on how the parameters are optimized. The formulas to calculate the probabilities
P ({stalling}) and P ({predictable}) are given in sections 7.1.3 and 7.1.4 respectively.
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Algorithm 7.2: Derivation of Optimal Quorum Parameters

Input:
• the total number of participants N
• the upper bound for the number of malicious participants f
• the target probabilities pmax-stalling and pmax-predictable

• the target number of steps δ∗ until P ({predictable}) ≤ pmax-predictable should hold

Output:
• the lowest possible quorum parameters qs and qt

1 qs ← 1
2 qt ← 1
3 while qs ≤ N do
4 if P ({stalling})[qs, qt] > pmax-stalling then
5 qs ← qs + 1
6 else if P ({predictable})[qs, qt] > pmax-predictable then
7 qt ← qt + 1
8 else
9 return 〈qs, qt〉

10 return “No solution found!”

As above we use 10−12 for both of the parameters pmax-stalling and pmax-predictable. To
compare the resulting values for different fractions of malicious participants, we selected
δ∗ = 38 for figure 7.2, as it is possible to achieve the upper bound for predictability with
all considered fractions of attacker within 38 rounds.

In comparison, figure 7.3 shows the optimized quorum parameters using the different
minimum value δmin, depending on the amount of malicious participants. For f =
10%, f = 25%, f = 33.3% and f = 40% the corresponding values are: δmin = 13, δmin =
20, δmin = 26 and δmin = 31. The values for δmin are based on figure 7.1.
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Figure 7.2: Optimized quorum parameters qs and qt for δ∗ = 38
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7.1.8 Communication Complexity

Quorum share distribution further improves upon the scalability of our PVSS-based
random beacon protocol. As a round’s leader has to provide encrypted shares only for a
subset of participants, the size of the message it has to broadcast reduces from O(n) to
O(qs). The message still has to be broadcasted, thus the complexity for share distribution
is given by O(n · qs). As we have shown in section 7.1.7, the quorum size qs is much
smaller that n, when considering large values of n.

In case a leader fails, communication complexity for recovery is also reduced from O(n2)
to O(n · qs), as only quorum members (instead of all participants) have to broadcast a
single message of constant size in order for all participants to recover the missing shared
secret and obtain the next random beacon value.

In both cases, the overall communication complexity of the protocol is lowered from
O(n2) to O(n · qs). Figure 7.4 shows the resulting amount of data transmission required.
As before (see sections 4.4 and 6.6.2), we base our figure on message sizes obtained from
a 256 bit implementation of Schoenmakers’ PVSS. We assume an adversary controlling
less than a third of the nodes in the network and use the optimized quorum parameters
for δ∗ = 38 as given in figure 7.2.
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Figure 7.4: Total amount of communication required for our PVSS-based random beacon
protocol with quorum share distribution, assuming an adversary controlling up to 33%
of the nodes
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7.2 Chained PVSS Commitments

In this section, we describe another extension to the PVSS-based random beacon protocol
from chapter 6. This extension might be applied together or without the approach of
quorum share distribution given in section 7.1.

As we will see in section 7.2.2, the protocol setups shows similarities to both the hashchain-
based random beacon as well as the PVSS-based beacon. Its aim is to combine the
advantages of both. In particular, the property of committing to all future values during
the setup phase, as given in the hashchain-based beacon, is applied to the PVSS-based
beacon.

7.2.1 Motivation

In section 6.6, we analyzed the possible options an attacker has to manipulate the random
beacon values. The only points in time when a participant can try to manipulate future
random beacon are rounds where the participant is leader. The leader Lx of a round x
basically has the following options:

(1) Do nothing.

(2) Produce and broadcast an invalid leader block.

(3) Produce and broadcast a valid leader block Bx, including a new PVSS commitment
Com(Gs).

For cases one and two, there is no change. Both cases lead to the construction of a
recovered block. In the second case, if a valid signature is provided for the block, the
protocol might be extended to exclude the corresponding leader from the protocol.

For the third and most interesting case, the leader Lx has the choice to select a particular
secret value s to construct different PVSS commitments {Com(Gs1), Com(Gs2), ...} (see
section 6.6.7 for an extended discussion). In the rare case an attacker (i) controls Lx,
(ii) can predict the random beacon value up to round x+ τ and (iii) controls Lx+τ+1 =
Lx, he an manipulate the random beacon value Rx+τ+1. This can be accomplished
by precomputing Rx+τ and then trying different values for s, which are used for the
commitment at round x. As a result, various alternatives for the value Rx+τ+1 are
obtained. We stress that this attack is not possible with in the attacker model presented
in 5.1, because:

(1) The construction of the set of potential leaders ensures that the same participant
cannot be leader at two distinct rounds that are less than f + 1 rounds apart:

∀τ < f, Lx+τ+1 6= Lx
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(2) The value Rx+τ of the random beacon at round x + τ for τ ≥ f cannot be
precomputed, since at least one honest participant’s influence on Rx+τ is unknown
to the attacker.

However, when applying the protocol extension from section 7.1, these guarantees only
hold with very high probability. Further, we might consider different threat models.
Instead of defining honest and malicious behavior, we could consider rational actors. In
such a scenario, we want to minimize the attack surface as much as possible. With the
approach of chained PVSS commitment, we are limiting the choices for the attacker in
the described attack. We ensure that a participant publishing a new leader block Bx
can only lead to one non-malicious outcome. The extended protocol ensures that only a
single value for s is considered valid as the basis for the PVSS commitment Com(Gs).
Using any other value for s is detected as soon as the publisher is selected as leader again.
In this case, the other participants are certain about the malicious behavior as it can be
cryptographically proven.

7.2.2 Setup

The setup process shows similarities to the hashchain-based random beacon. In fact, this
protocol extension can be seen as a combination of both the hashchain-based beacon and
the PVSS-based beacon.

As described in section 6.3, the initial block includes the participants’ public keys as well
as a single PVSS commitment for each participant. Such an initial PVSS commitment,
previously denoted as Com(Gs), is now constructed differently. We use Com(Gvd) to
refer to the updated definition for the protocol extension, where vd denotes the head of
a chained data structure. Similar to a hashchain, this data structure is based on some
secret seed s and is constructed as follows:

v0 = Gs

v1 = GH(v0) = GH(Gs)

v2 = GH(v1) = GH(GH(Gs))

v3 = GH(v2) = GH(GH(GH(Gs)))

...

vd = GH(vd−1)

As in chapter 5, we use d to refer to the length of this of chain of values. As before,
the calculation is very fast and can be accomplished for large values of d. It is also not
time critical as the process has to be performed only once during the setup phase of the
protocol.
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7.2.3 Operation

During the operation phase (see section 6.4), it is each participant’s task to construct
and broadcast a leader block every time they are selected as a leader. As part of this
block, a participant also needs to publish a new PVSS commitment. In the extended
protocol, a round’s leader L(i)

x cannot publish a PVSS commitment of his choice. He
rather has to provide the specific commitment Com(Gv

(i)
d−γ ) where γ denotes the number

of times L(i)
x has previously been selected as leader (excluding the current round). Here,

the list 〈v(i)
1 , v

(i)
2 , ..., v

(i)
d 〉 denotes the chained data structure Pi constructed during the

setup process.

7.2.4 Verification

A verifier has to check whether the shared secret Gv(i) , to which a leader L(i)
x has

committed itself, is actually part of the leader’s chain of values 〈v(i)
1 , v

(i)
2 , ..., v

(i)
d 〉. In

particular, the verifier has to check whether Gv(i) corresponds to the last unrevealed
value in the chain.

This can be accomplished as soon as the shared value Gv(i) is revealed or as part of next
leader block Bx or the next recovered block bx. A verifier can then check if the published
commitment is indeed part of the leader chains by calculating

GH(Gv(i) )

and checking whether the result matches the last revealed value in the chain. The above
condition is not verified when a participant Pi is selected as a leader for the first time
(γ = 0). In this case, the first shared secret from Pi is used as the base to commit Pi to
all the future shared secrets.

7.2.5 Obtaining Random Beacon Values

The values of the random beacon Rx have previously been calculated based on the value
of the previous round Rx−1 as well as the revealed or recovered shared secret for the
round’s leader. The definition was given by:

Rx = H(Rx−1 || Gsi)

Here, Gsi denotes the shared secret of the leader’s previous PVSS commitment.

In the extended protocol, we define the value of Rx dependent on the result of the
verification:

Rx =
{
H(Rx−1 || Gv

(i)) if verification is successful
H(Rx−1) otherwise
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In case the additional verification steps of the extended protocol fails, malicious behavior
is proven since L(i)

x previously signed a leader block containing a PVSS commitment to
some illegal value. This is also the case if L(i)

x does not publish the block. Using the NIZK
proofs provided by the reconstructing participants, the validity of the reconstruction
process, which then leads to an illegal value, is ensured.
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CHAPTER 8
Discussion

In this section, we discuss the advantages and drawbacks of the presented state-of-the-art
protocols as well as outline potential areas of improvements. We start our discussion by
providing an overview of the different protocols and their characteristics in section 8.1.
In sections 8.2 and 8.3, we provide additional explanations, revisit the key properties our
solution provides and compare it to existing protocols. The discussion ends with section
8.4, where suggestions for future research in this area are presented.

8.1 Comparison Overview
In the following, we provide an overview of various properties of the discussed approaches
for generating public-verifiable and bias-resistant randomness. For the sake of comparison
we are also including the Proof-of-Work variants described in sections 4.1.3 and 4.1.4 as
well as our illustrative hashchain-based protocol. Additional details for the assessment
of the protocol properties are outlined in chapter 4 for Algorand, Dfinity, RandShare,
RandHound, RandHerd, Ouroboros, Scrape, PoW and Iterated PoW, in chapter 5 for
our hashchain-based protocol, in chapter 6 for our PVSS-based protocol and in chapter 7
for our extended PVSS-based protocol.
Regarding the comparison provided in table 8.1, we mark a property prop as uncertain
using the notation ∼prop if we have not been able to fully access the property using the
available information. For cells marked with ? we cannot provide an adequate evaluation
due to a lack of available information. The symbol ! is used to describe that a property
is fulfilled, whereas % refers to unfulfilled properties. Additionally, we use (!) to indicate
that a property is achieved with very high probability and / or over time. Further
information on specific properties is indicated using the notation prop(1), prop(2), ... and
given after the comparison table. For the complexity evaluations, n refers to the number
of participants in the network and c describes the size of the subset used in the specific
protocol. Notice that c is different depending on the protocol.
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Algorand syn.(1) 10−12
(3) ? (!) %(10) ? ∼O(1) unique signatures

Dfinity ? 10−17 ∼O(cn)(5) (!) ? ? ∼O(1) BLS

RandShare asyn. %(4) O(n3) ! ! O(n3)(6) O(n3)(6) PVSS

RandHound ∼syn.(2) 0.08% ∼O(c2n) ! ! ∼O(c2n)(7) ∼O(c2n)(7) PVSS & CoSi

RandHerd ∼syn.(2) 0.08% ?(11) ! ! O(c2 log n) O(c2 log n) PVSS & CoSi

Ouroboros syn. ! O(n3) ! ! O(n3)(6) O(n3)(6) PVSS

Scrape syn. ! O(n3) ! ! O(n2) O(n2) PVSS

PoW syn. ! O(n) (!) % very high(8) O(1) hash function

PoW iterated syn. ! O(n) ! ! very high(8) very high(8) hash function

Our Hashchain Protocol syn ! O(n) (!) % O(1) O(1) hash function

Our PVSS Protocol syn. ! O(n2) (!)(9) ! O(n2)(6) O(n2)(6) PVSS

Our Ext. PVSS Protocol syn. 10−12
(3) O(cn) (!) (!) O(c2)(7) O(c2)(7) PVSS

Table 8.1: Comparison of approaches for generating public-verifiable randomness
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8.1. Comparison Overview

In the following, we provide additional details in regard to the assessment provided in
table 8.1:

(1) In Algorand, a custom communication model is specified in great detail. Although
synchrony is assumed to some extent by using time bounds, other protocols have
stronger synchrony requirements.

(2) The authors of the RandShare, RandHound and RandHerd protocols explicitly state
asynchronous communication only for their RandShare protocol. For RandHound
and RandHerd, an indication for the requirement of synchronous communication is
given. See section 4.5 for an extended discussion.

(3) The exact probability is configurable as a protocol parameter. The given value
represents a suggestion by the by the respective authors.

(4) Liveness in the asynchronous communication model is only achieved after a barrier
point. Whether or not this point is reached depends on the outcome of a byzantine
agreement protocol, which RandShare uses as a subprotocol (see section 4.5).
Assuming synchronous communication instead, liveness is ensured.

(5) Due to a lack of information, we can only estimate the communication complexity.
Assuming that the only communication strictly necessary to produce the random
beacon values is the broadcast of partial signatures, which each member of the
correct group has to perform, the complexity O(cn) can be derived.

(6) Using the optimization of Schoenmakers’ PVSS proposed by the authors of the
Scrape protocol, the complexity can be further reduced by a factor of n.

(7) Again using Scrape’s optimization, the complexity can be reduced. Since the PVSS
protocol is executed among a subset of participants, a reduction by a factor of c is
possible.

(8) The complexity is not dependent on the number of participants and hence is actually
O(1) in terms of participants. However, as PoW is inherently computation intensive,
the notation of O(1) would be misleading in comparison to other schemes.

(9) Our protocol reaches unpredictability with absolute certainty after f + 1 rounds.
Before that point, the protocol can only provide unpredictability with increasingly
high probability (see section 6.6.5).

(10) For Algorand, bias-resistance is not achieved because the corresponding leader
selection algorithm does not ensure leader uniqueness. Further, malicious leaders
can selectively withhold values to bias the produced randomness.

(11) According to our interpretation, RandHerd’s communication complexity O(c2 log n)
is stated per server only. Therefore, this value is not comparable to the other
approaches, which consider the communication complexity of the overall system.
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8. Discussion

8.2 Comparison of PVSS-based Random Beacon
Protocols

We follow our discussion with the comparison of our existing PVSS-based random
beacon protocols to our PVSS-based solution. During our evaluation of the PVSS-based
random beacon protocols in Ouroboros, RandShare and Scrape, we discovered that those
protocols have a very similar overall structure. In the following section, we highlight
these similarities, advantages and disadvantages and afterwards compare them to our
approach.

8.2.1 Existing PVSS-based Random Beacon Protocols

In Ouroboros and Scrape, the use of publicly-verifiable secret sharing is explicitly stated.
The authors of the RandShare protocol do not only explicitly mention verifable secret
sharing for RandShare, but also describe the primitive of publicly-verifiable secret sharing
and use it for the protocols RandHound and RandHerd. Ignoring this minor distinction
for RandShare, the overall protocol structure for all three protocols is as follows:

(1) Share distribution: Every participant runs an instance of PVSS to distribute
encrypted shares of a secret value to all other participants. The set of encrypted
shares a participant distributes is called the participant’s commitment.

(2) Share verification: Each participant verifies the encrypted shares it received
using the included NIZK proofs.

(3) Share agreement: The participants need to agree on a set of at least f + 1
commitments. The use of f + 1 or more commitments ensures that the secret of at
least one honest participant is used. In the synchronous communication setting,
this problem can be resolved easily. Ouroboros and Scrape assume a common
agreed broadcast channel. In the asynchronous setting considered by RandShare, a
BFT agreement protocol is run.

(4) Share revealment: Honest participants (in the agreed set) disclose their shared
secret to all other participants. Correctness of the secrets can be verified against
the corresponding participant’s commitment.

(5) Share recovery: Missing secrets for all participants in the agreed set get recovered.
This is always possible as the number of honest nodes is by assumption greater
than the PVSS reconstruction threshold.

(6) Randomness recovery: All revealed / recovered secrets in the agreed set are
combined, for example by using a cryptographic hash function.

In the following, we summarize the advantages and issues of the three protocols.
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8.2. Comparison of PVSS-based Random Beacon Protocols

8.2.2 Advantages of Existing PVSS-Beacon Protocols

Given the underlying assumptions hold, the protocols achieve optimal unpredictability
and optimal bias-resistance. Further, the results are publicly-verifiable and the
protocols use only established cryptographic primitives.

8.2.3 Disadvantages of Existing PVSS-Beacon Protocols
Major drawbacks of the approaches are the high communication complexity, as a result
of running n instances of a PVSS protocol for producing a single random beacon value.
Assuming peer-to-peer communication, each participant needs to send messages to all
other participants, resulting in O(n2) messages. For the commitment, the message size
is given by O(n), which leads to an amount of O(n3) data transmitted. Consequently,
these protocols have bad scalability as the number of participants increases. In
case asynchronous communication is assumed (RandShare), the presented protocol
only produces an output after a barrier point is reached (see section 4.5.2 for details).
Consequently, liveness is not ensured under asynchrony.

8.2.4 Comparison to our PVSS-Beacon Protocol
The aim of our protocol is to improve upon the bad scalability properties of existing
approaches, while still retaining their advantages. We do not change the underlying
assumption in regard to the communication model and use the same established crypto-
graphic primitives for our construction. If not explicitly stated otherwise, our protocol
provides the same guarantees as existing approaches. We consider the properties of our
protocol as described and evaluated in chapter 6, as well as our protocol in combination
with the developed protocol extension quorum share distribution from section 7.1, which
we refer to by the term extended protocol.

Bias-resistance and Unpredictability in our Protocol Still, the properties of
optimal bias-resistance is preserved and unpredictability is ensured with absolute certainty
after f + 1 rounds, where f specifies the number of malicious nodes. In addition to
this unpredictability guarantee our protocol provides a probabilistic one, which ensures
that the probability of predicting future random beacon values decreases exponentially
over time. Independent of the number of of nodes, unpredictability with very high
probability, is ensured after 25 rounds, considering an adversary controlling 33% of all
nodes. Additional details are given in section 6.6.5.

Bias-Resistance and Unpredictability in our Extended Protocol As a tradeoff
for better message complexity, the strict unpredictability guarantee after f + 1 cannot be
achieved when applying the quorum share distribution protocol extension. Still unpre-
dictability is ensured with very high probability. The corresponding failure probability
is defined using the protocol parameter pmax-predictable = 10−12. As bias-resistance is
ensured by unpredictability in our protocol, the probabilistic guarantees also apply to
bias-resistance. For both properties, we outline and evaluate the resulting guarantees in
more detail in section 7.1.
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8. Discussion

Availability / Liveness in our Extended Protocol An additional tradeoff of quo-
rum share distribution is that availability can only be ensured with very high probability.
In comparison, existing protocols and our protocol without the extension always provide
availability (given the underlying assumptions hold). However, we also ensure liveness
in the extended approach based on the protocol parameter pmax-stalling = 10−12, which
defines the probability of a protocol stall. For the given value, the expected duration
until a protocol stall happens under adversarial conditions is ≈ 317000 years.

Communication Complexity in our Protocol For our PVSS-based random pro-
tocol described in detail in chapter 6, a noticeable difference is share distribution. In
each round, only one participant, i.e. the round’s leader, distributes PVSS shares to the
other participants, whereas each participant has to perform this task in existing schemes.
As a consequence, the communication complexity for the system reduces from O(n3) to
O(n2).

Communication Complexity in our Extended Protocol Using the described
protocol extension from section 7.1, communication complexity is further reduced. In
each round, the leader has to broadcast his PVSS commitment of size O(qs). This results
in a complexity of O(n · qs) for share distribution. Here, qs refers to the quorum size. As
shown in figures 7.2 and 7.3, qs quickly converges and can thus be considered constant
for large numbers of participants. In case of an honest leader, a new random beacon is
obtained by revealing the previously committed value, hence the optimal communication
complexity of a single broadcast O(n) is achieved. Even in the worst case, i.e. the
quorum has to collaborate to recover the shared secret, the complexity is bounded by
O(n · qs) for the whole system.

In the following, figure 8.1 shows a comparison of the amount of data transfer required
in the overall network to produce a new random beacon value. The figure is based on
the evaluation of the communication complexity of existing PVSS-based protocols given
in section 4.4.3, the evaluation of our protocol (see section 6.6) and the evaluation of the
extended protocol (given in section 7.1.8).
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Figure 8.1: Comparison of communication complexity of existing PVSS-based protocols,
with our protocol and our extended protocol
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8. Discussion

8.3 Our PVSS-based Random Beacon Protocol in
Relation to other Existing Approaches

In the following, we compare our solution to existing approaches, namely Dfinity [58],
Algorand [17], RandHound [18] and RandHerd [18]. In contrast to our proposal, those
existing approaches are not using PVSS (Dfinity, Algorand) at all or use PVSS in a quite
different construction (RandHound and RandHerd).

Probabilistic Liveness Guarantees All four protocols share probabilistic liveness
guarantees with our extended protocol. In the following, table 8.2 compares the charac-
teristics given by the authors. For Dfinity, RandHound and RandHerd, we give the failure
probabilities for the typical scenarios outlined, while the resulting failure probabilities are
protocol parameters for Algorand and our proposal, and thus can be defined according
to the specific use case.

Protocol failure probability

Dfinity 10−17

Algorand 10−12

RandHound 0.08%
RandHerd 0.08%
Our Protocol 10−12

Table 8.2: Comparison of protocol failure guarantees

Existing PVSS protocols as well as our protocol without the extension of quorum share
distribution provide liveness without relaying on probabilistic guarantees.

Bias-Resistance Full bias-resistance is only provided by RandHound, RandHerd as
well as our protocol. Our extended protocol ensures bias-resistance with very high
probability. For Dfinity, bias-resistance (as well as liveness) crucially depends on the
attackers ability to manipulate the assignment of nodes into groups. As described in
more detail in section 4.2.7, assessment of this property is hard due to lack of available
information. To the best of our understanding, we believe that Dfinity’s protocol ensures
bias-resistance. For Algorand, bias-resistance is not given. A malicious leader is able to
pick between two (and potentially more) potential random beacon values for a single round.
A more detailed evaluation on why Algorand by design fails to provide bias-resistance is
given in section 4.3.5.
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8.3. Our PVSS-based Random Beacon Protocol in Relation to other Existing Approaches

Unpredictability While all protocols provide unpredictable randomness, Dfinity,
RandHound, RandHerd and existing PVSS-based protocols manage to ensure unpre-
dictability of the next random beacon value. Our protocol provides unpredictability
with absolute certainty after f + 1 rounds, and gives probabilistic guarantees otherwise.
Algorand provides probabilistic guarantees similar to our extended protocol.

Verifiability All considered protocols allow for public verification, i.e. verification from
third parties, which are not necessary participants in the system. However, the systems
can be distinguished by the computational effort required for verification. Algorand,
Dfinity, RandHerd and our illustrative hashchain-based protocol have an advantage,
as they only require a minor amount of computation. For PVSS-based protocols, the
verification effort depends on the group size and can be significantly lowered by using
Scrape’s [19] optimization of Schoenmakers’ PVSS, described in section 4.6.

Cryptographic primitives Existing PVSS-based protocols as well as RandHound,
RandHerd and our proposed protocol rely on Schoenmakers’ PVSS, digital signatures and
cryptographic hash functions as cryptographic primitives. RandHound and RandHerd
additionally rely on Schnorr Threshold Signatures. Algorand does not require PVSS
but a unique signature scheme. The authors however do not give additional details
on which digital signature scheme to use. Pairing-based digital signatures, such as the
BLS signatures, provide signature uniqueness and, thus, might serves as a candidate for
instantiation. Additionally, BLS signatures are used as the fundamental building block
for Dfinity’s random beacon protocol.

Scalability To provide better scalability, Dfinity, Algorand, RandHound, RandShare
as well as our extended protocol try to reduce the number of participants which need to
perform certain operations. In Dfinity, the participants are assigned to groups, which
then collectively produce a new random beacon value by computing a threshold signature.
Algorand randomly selects a smaller set of verifiers, which (instead of the total set of
participants) run a byzantine agreement protocol to confirm a claimed block. RandHound
and RandHerd split the set of participants into smaller disjunct groups. Each participant
then runs a PVSS only with the other member of its group. The pigeonhole principle then
ensures that the result, which is combined using values from all groups, is not manipulable
and can be considered random. RandHerd requires a round of RandHound during setup
and improves upon the performance of RandHound for additional invocations.

In our extended protocol, a round’s leader distributes his commitment to a randomly
selected group of participants. This set, referred to by the term quorum, ensures that
the committed value is revealed if the leader fails at a later point in time or behaves
byzantine. In the typical case of an honest leader, the leader itself reveals his committed
value leading to optimal performance in this scenario, requiring only a broadcast of a
single message of constant size.
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8. Discussion

8.4 Future work

During our extensive study of existing protocols as well as throughout the design of our
protocols, we gained deep insights on the topic of verifiable randomness generation in
decentralized systems. In this section, we want to discuss our findings in regard to open
questions and potential areas for further improvements.

8.4.1 Communication Model

With the exception of RandShare protocol, which is not scalable due to the high com-
munication complexity, and the Dfinify project, where no detailed information on the
communication model is available, all analysed protocols rely on the assumption of
synchronous communication to some extent. In a synchronous communication model,
messages between honest nodes are delivered within some fixed time bound. Protocols like
Ouroboros, Scrape or our illustrative hashchain-based random beacon protocol crucially
rely on the assumed time bounds. Other protocols, in particular Algorand, for which
the authors give a very detailed description of the underlying communication model,
considerably weaken the synchrony assumptions and only require probabilistic bounds
on the delay and transmission guarantees of messages between honest participants.

Still, underlying timing assumptions remain and are potential subject for violation. For
example, Miller et al. [70], as part of their work on an asynchronous BFT protocols,
argues in favor of asynchronous protocols, which do not rely on timing assumption of
the underlying communication network. In particular, they answer the question of “why
weakly synchronous BFT protocols can fail (or suffer from performance degradation)
when network conditions are adversarial (or unpredictable)” [70], and motivate the
use of asynchronous protocols in blockchain-based systems. Consequently, we argue
that the extension / modification of existing random beacon protocols to support fully
asynchronous communication is an important area for future research.

8.4.2 Construction of a Full Fledged Distributed Ledger

As described in sections 4.2, 4.3 and 4.4, existing state-of-the-art protocols already
use verifiable randomness as a fundamental building block for (Proof-of-Stake based)
blockchains. However, none of the protocols have been deployed in a large scale setting.
Other designs, such as the improvements by Cascudo et al. [19] in Scrape, the RandHerd
protocol by Syta et al. [18], as well as our protocol, are described in a standalone
setting and have not yet been used to build full fledged distributed ledgers. Therefore,
we strongly advocate additional research in this area, which should not only focus on
further improvements of the random beacon protocols themselves, but also on the overall
construction and integration with distributed ledgers.
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8.4. Future work

8.4.3 Integration into Existing Blockchains

As already outlined in section 1.3, publicly-verifiable bias-resistance randomness is
particularly important for Smart Contracts, for example in the Ethereum blockchain. In
this case, the access to a trustworthy source of randomness is severely restricted due to
the use of a deterministic execution environment.

Integration of a random beacon protocol, for example the inclusion of the successive
random beacon values in the block header, would allow Smart Contracts to access ran-
domness in a trust-less manner without the need to change the guarantees a deterministic
execution environment provides. Consequently, the problem of using insecure sources
of randomness (e.g. the blockhash or the reliance on external random oracles) could be
resolved.
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CHAPTER 9
Conclusion

The introduction of Proof-of-Work, as the underlying technology for establishing consensus
in decentralized systems like Bitcoin, enabled scalability to thousands of miners. The
inherent problem of very high resource consumption, as a direct consequence of solving
the computational puzzles involved, nevertheless remains. To address this issue, various
alternatives including Proof-of-Stake have been proposed. Proof-of-Stake, by construction,
does not require a high amount of computational resources. Instead, virtual resources (i.e.
cryptographic money) are used. As, for example, identified by Kiayias et al. [12], publicly-
verifiable and bias-resistant randomness is required as underlying building block for
blockchains based on Proof-of-Stake. Various other use cases for trustworthy randomness,
including lottery services, publicly-auditable selections, generation of cryptographic
parameters and traditional byzantine consensus, have been identified [18, 21, 23].
In this thesis, we have been the first to provide an extensive review and comparison of
state-of-the-art protocols in this domain. We analyzed both random beacon protocols
(Scrape, RandShare, RandHound, RandHerd), which are built for the purpose of generated
verifiable randomness, as well as protocols, which require verifiable randomness as part of
their overall construction (Dfinity, Algorand, Ouroboros). We identified publicly-verifiable
secret sharing (PVSS), in particular Schoenmakers’ PVSS, as a common building block
for the randomness generation in Scrape, RandShare, RandHound, RandHerd and
Ouroboros. In addition to traditional primitives like cryptographic hash functions and
digital signatures, we showed how Algorand and Dfinity employ unique signatures and
pairing-based cryptography (BLS signatures) to obtain verifiable randomness.
In our evaluation, we illustrate that Algorand’s randomness is not suitable for scenarios
where bias-resistance is required. Dfinity, a project which relies on distributed key
generation for their random beacon, has not published detailed information on how this
crucial component should be implemented. Using the scenario given by the authors of
RandHound and RandHerd, the protocol failure probability of their protocols shows a
disadvantage compared to existing approaches like Algorand and our proposal, which
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9. Conclusion

allows the definition of an acceptable failure probability of 10−12 or 10−18 as protocol
parameter. Our comparison further outlines that PVSS-based random beacon protocols,
which require each participant to exchange shares with all other participants (RandShare,
Ouroboros, Scrape), provide good properties in regard to the quality of the produced
randomness, but fail to scale to a large number of participants.

This finding leads to another major contribution of this thesis, a new PVSS-based
random beacon protocol with greater focus on scalability. Our protocol improves the
communication complexity of existing approaches from O(n3) to O(n2), while still
providing the key properties of availability, bias-resistance, unpredictability and public-
verifiability.

We advance our protocol using a concept called quorum share distribution. The extended
protocol still achieves the desired protocols characteristics and gives strong probabilistic
guarantees with negligible and parameterizable failure probability. Quorum share dis-
tribution further lowers the required amount of exchanged data to O(n · qs). We show
that qs, referring to the size of the quorum, is effectively a small constant, considering a
large number of participants. In addition, our protocol performs exceptionally well in the
common case, where an honest leader is selected. In this case, the leader is only required
to broadcast a single message, leading to a new agreed random beacon value among all
the network participants.

In this thesis, we highlighted the importance of non-manipulable, publicly-verifiable
randomness in decentralized systems. While basic approaches fail to provide a solution in
the general case, state-of-the-art approaches set new standards in this field. We presented
a new random beacon protocol improving towards an optimal solution by eliminating
the scalability disadvantages of existing PVSS-based protocols. Still, further research
is required to evaluate existing approaches, mitigate potential weaknesses and extend
the approach to the setting of asynchronous communication. To conclude this thesis, we
follow Donald Knuth’s famous words:

Random numbers should not be generated with a method chosen at random.
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APPENDIX A
Appendix

A.1 Full example of Shamir’s Secret Sharing

In the following, we provide an example for a (3, 5) Shamir Secret Sharing, including
details on all the computation steps involved. We assume the a dealer whats to share a
secret number S between 0 and 52, e.g. 10, among n = 5 participants, such that any
collaboration of t = 3 participants, e.g. participants 1, 4 and 5, can reconstruct the secret
number.

Let S = α0 = 10 be the secret number to be shared.

The prime number p = 53 defines the set of potentials values to be shared, thus
Zp = Z53 = {0, 1, 2, ..., 52}. All operations are performed over the set Zp.

Choose t− 1 = 2 coefficients α1 = 17 and α2 = 44 randomly from Zp.

The coefficients and the secret number form the polynomial p(x) = 10 + 17x+ 44x2.

Calculate the shares: Si ≡ p(i) (mod p)

S1 ≡ p(1) (mod 53)
S1 ≡ 10 + 17 · 1 + 44 · 12 (mod 53)
S1 ≡ 10 + 17 + 44 (mod 53)
S1 ≡ 71 (mod 53)
S1 = 18

Similarly we get S2 = 8, S3 = 33, S4 = 40 and S5 = 29.

We select a set of t shares for reconstruction: {S1, S4, S5}

The indices for the shares are then given by i1 = 1, i2 = 4 and i3 = 5.
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Then the reconstruction is given by evaluating the formula for Lagrange interpolation:

S ≡
t∑

j=1
Sij

t∏
k=1
j 6=k

ik · (ik − ij)−1 (mod 53)

S ≡ Si1
3∏

k=1
16=k

ik · (ik − i1)−1 + Si2

3∏
k=1
26=k

ik · (ik − i2)−1 + Si3

3∏
k=1
36=k

ik · (ik − i3)−1 (mod 53)

S ≡ Si1
3∏

k=1
16=k

ik · (ik − i1)−1 + ... (mod 53)

S ≡ Si1
(
(i2 · (i2 − i1)−1) · (i3 · (i3 − i1)−1)

)
+ ... (mod 53)

S ≡ S1[(4 · (4− 1)−1) · (5 · (5− 1)−1)
)

+ ... (mod 53)
S ≡ 18

(
(4 · (3)−1) · (5 · (4)−1)

)
+ ... (mod 53)

S ≡ 18
(
(4 · 18) · (5 · 40)

)
+ ... (mod 53)

S ≡ 259200 + ... (mod 53)
S ≡ 30 + ... (mod 53)

S ≡ 30 + Si2

3∏
k=1
26=k

ik · (ik − i2)−1 + ... (mod 53)

S ≡ 30 + Si2
(
(i1 · (i1 − i2)−1) · (i3 · (i3 − i2)−1)

)
+ ... (mod 53)

S ≡ 30 + S4
(
(1 · (1− 4)−1) · (5 · (5− 4)−1)

)
+ ... (mod 53)

S ≡ 30 + 40
(
(1 · (−3)−1) · (5 · 1−1)

)
+ ... (mod 53)

S ≡ 30 + 40
(
(1 · 50−1) · (5 · 1−1)

)
+ ... (mod 53)

S ≡ 30 + 40
(
(1 · 35) · (5 · 1)

)
+ ... (mod 53)

S ≡ 30 + 7000 + ... (mod 53)
S ≡ 30 + 4 + ... (mod 53)

S ≡ 30 + 4 + Si3

3∏
k=1
36=k

ik · (ik − i3)−1 (mod 53)

S ≡ 30 + 4 + Si3
(
(i1 · (i1 − i3)−1) · (i2 · (i2 − i3)−1)

)
(mod 53)

S ≡ 30 + 4 + S5
(
(1 · (1− 5)−1) · (4 · (4− 5)−1)

)
(mod 53)

S ≡ 30 + 4 + 29
(
(1 · (−4)−1) · (4 · (−1)−1)

)
(mod 53)

S ≡ 30 + 4 + 29
(
(1 · 49−1) · (4 · 52−1)

)
(mod 53)

S ≡ 30 + 4 + 29
(
(1 · 13) · (4 · 52)

)
(mod 53)

S ≡ 30 + 4 + 78416 (mod 53)
S ≡ 30 + 4 + 29 (mod 53)
S = 10
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A.2 Python Implementation of Schoenmakers’ PVSS

In the following, we provide a implementation developed during our study of Schoen-
makers’ PVSS protocol. We tested our implementation using Pyhton 3.6. There are no
dependencies on external libraries.

File: pvss.py
import hmac
from hashlib import sha512
from collections import namedtuple
from random import SystemRandom

from Zp import *

random = SystemRandom() # should return cryptographic random numbers
# update to use Python 3.6 new random module secrets

GroupParameters = namedtuple(’GroupParameters’, [’p’, ’q’, ’g’, ’G’])
KeyPair = namedtuple(’KeyPair’, [’private_key’, ’public_key’])

class PVSS:

def __init__(self, t, n, group=None, keypair=None, coefficients=None):
"""
Creates an instance of a (t, n) public-verifiable secret sharing scheme.
:param t: number of required shares for recovering the secret
:param n: total number of participants in the scheme (not counting the dealer)
:param group: a group of prime order q in which the discrete logarithm problem is hard,

independent generators g, G of the group (no party knows the discrete log of g with
respect to G) these are publicly known parameters

:param keypair: optional, set a private/public keypair used for share decryption proof
:param coefficients: optional, list of coefficients of length t used for secret polynomial
"""
if group is None:

group = Zp_1367
self.t = t
self.n = n
self.q = group.size()
self.Gq = group
self.Zq = Zp(self.q)
self.g, self.G = group.generators()
if keypair is not None:

self.keypair = KeyPair(*keypair)
self.coefficients = coefficients

def init_secret(self, secret=None):
"""
Sets the coefficients of the secret polynomial to random values from Zq.
:param secret: optional, if specified the first coefficient is set to secret, otherwise a

random value is chosen
:return: G**p(0) == G**secret, note this is different to secret itself
"""
self.coefficients = [self.random_element() for _ in range(self.t)]
if secret is not None:

self.coefficients[0] = self.Zq(secret)
return self.G ** self.evaluate_polynomial(0)

def share(self, public_keys):
"""
Creates n shares the secret G**p(0) and a non-interactive zero-knowledge correctness proof

for the shares.
The shares can be validated by any third party.
:param public_keys: a list of the public keys of the n participants
:return: tuple of the encrypted shares and the correctness proof
"""
t, n, g = self.t, self.n, self.g
# creates share for each participant, encrypt with the provided public keys
encrypted_shares = [pub ** self.evaluate_polynomial(i + 1) for i, pub in
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enumerate(public_keys)]

# generate a publicly-verifiable, zero-knowledge, non-interactive proof for the validity of
the shares

commitments = [g ** c for c in self.coefficients]
challenge, responses = self.discrete_log_equality_parallel_composition(

g1=[g] * n, # use same generator g
h1=[prod([commitments[j] ** ((i + 1) ** j) for j in range(t)]) for i in range(n)], #

h1[i] = g**p(i+1)
g2=public_keys,
h2=encrypted_shares,
alpha=[self.evaluate_polynomial(i + 1) for i in range(n)]

)

proof = (commitments, challenge, responses)
return encrypted_shares, proof

def decrypt(self, encrypted_share):
"""
Decrypts a provided shares using the stored keypair and proofs the correctness of the

decryption.
:param encrypted_share: the encrypted share to decrypt
:return: a tuple of the decrypted share and the correctness proof
"""
if self.keypair is None:

assert False, ’No keypair set’
share = encrypted_share ** (1 / self.keypair.private_key)
proof = self.discrete_log_equality(

g1=self.G,
h1=self.keypair.public_key,
g2=share,
h2=encrypted_share,
alpha=self.keypair.private_key

)
return share, proof

def recover(self, shares):
"""
Recovers the shared secret from exactly t shares.
Note that the provided shares shares have to be encrypted and verified before recovering.
:param shares: a list of n values;

each value is either a verified and decrypted share or None (if the shareholder is not
participating)

:return: the shared secret G**p(0)
"""
indices_one_based = [i + 1 for i in range(self.n) if not shares[i] is None]
assert (len(indices_one_based) >= self.t)
return prod([shares[i - 1] ** self.lagrange_coefficient(i, indices_one_based) for i in

indices_one_based])

def verify_shares(self, encrypted_shares, proof, public_keys):
"""
Verifies that a dealer has provided correct shares.
:param encrypted_shares: list of n encrypted shares
:param proof: correctness proof
:param public_keys: public keys of the participants of the secret sharing scheme
:return: True if the verification was successful, False otherwise
"""
t, n, g = self.t, self.n, self.g
commitments, challenge, responses = proof

if len(encrypted_shares) != self.n: return False
if len(commitments) != self.t: return False
if len(responses) != self.n: return False

try:
return self.verify_discrete_log_equality_parallel_composition(

g1=[g] * n,
h1=[prod([commitments[j] ** ((i + 1) ** j) for j in range(t)]) for i in range(n)], #

h1[i] = g**p(i+1)
g2=public_keys,
h2=encrypted_shares,
challenge=challenge,
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responses=responses
)

except:
return False

def verify_share_decryption(self, share, encrypted_share, proof, public_key):
"""
Verifies that a participant has correctly decrypted a share.
:param share: the decrypted share to be verified
:param encrypted_share: the publicly known encrypted share
:param proof: the correctness proof for the decryption
:param public_key: the public key of the participant who provided the share
:return: True if the verification was successful, False otherwise
"""
challenge, response = proof
return self.verify_discrete_log_equality(

g1=self.G,
h1=public_key,
g2=share,
h2=encrypted_share,
challenge=challenge,
response=response

)

def generate_keypair(self, return_private_key=False):
"""
Generates a random keypair for the participant.
:param return_private_key: if True, also the private key is returned
:return: the public key generated, or a tuple of private and public key
"""
private_key = self.random_element(exclude_zero=True) # indeed breaks if private key is zero
public_key = self.G ** private_key
self.keypair = KeyPair(private_key, public_key)
if return_private_key:

return self.keypair
return public_key

def discrete_log_equality(self, g1, h1, g2, h2, alpha):
"""
Zero-knowledge, non-interactive proof of the fact that the proofer knows alpha such that:
h1 = g1**alpha and h2 = g2**alpha
:return: tuple of a challenge and a response which are used to verify the proof
"""
w = self.random_element()
a1 = g1 ** w
a2 = g2 ** w
challenge = self.compute_hash(h1, h2, a1, a2)
response = w - alpha * challenge
return challenge, response

def discrete_log_equality_parallel_composition(self, g1, h1, g2, h2, alpha):
"""
See discrete_log_equality.
Runs discrete_log_equality in parallel n times using a common challenge.
:return: tuple of a common challenge and n responses which are used to verify the proof
"""
n = self.n
w = [self.random_element() for _ in range(n)]
a1 = [g1[i] ** w[i] for i in range(n)]
a2 = [g2[i] ** w[i] for i in range(n)]
challenge = self.compute_hash(h1, h2, a1, a2)
responses = [w[i] - alpha[i] * challenge for i in range(n)]
return challenge, responses

def verify_discrete_log_equality(self, g1, h1, g2, h2, challenge, response):
"""
Verifies a discrete log equality proof.
:return: True if the verification was successful, False otherwise
"""
a1 = g1 ** response * h1 ** challenge
a2 = g2 ** response * h2 ** challenge
challenge_verification = self.compute_hash(h1, h2, a1, a2)
return challenge == challenge_verification
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def verify_discrete_log_equality_parallel_composition(self, g1, h1, g2, h2, challenge,
responses):

"""
Verifies a parallel discrete log equality proof with a common challenge.
:return: True if the verification was successful, False otherwise
"""
n = self.n
a1 = [g1[i] ** responses[i] * h1[i] ** challenge for i in range(n)]
a2 = [g2[i] ** responses[i] * h2[i] ** challenge for i in range(n)]
challenge_verification = self.compute_hash(h1, h2, a1, a2)
return challenge == challenge_verification

def evaluate_polynomial(self, x):
"""
Evaluates the secret polynomial (of degree t-1) at x.
The coefficients for the polynomial are randomly generated by init_secret.
:param x: evaluation point for the polynomial, typically a 1-based index of the participant
:return: f(x) mod p
"""
return sum(self.coefficients[j] * (x ** j) for j in range(self.t))

def random_element(self, exclude_zero=False):
"""
Returns a random element from Zq which can be used for cryptographic purposes.
The result is used as an exponent for generators of the Group Gp
:param exclude_zero: if set, the function returns only non-zero elements
:return: the random element generated
"""
r = random.randint(1 if exclude_zero else 0, self.q - 1)
return self.Zq(r)

def lagrange_coefficient(self, i, share_indices):
"""
Calculates the lagrange coefficient used for recovering the shared secret.
:param i: 1-based index of the current share
:param share_indices: 1-based indices of all t shares used for recovering
:return: the lagrange coefficient l_i = prod(j/(j-i), j!=i)
"""
a, b = self.Zq(1), self.Zq(1)
for j in share_indices:

if j != i:
a *= j
b *= j - i

return a / b

def compute_hash(self, *data):
"""
Computes a cryptographic hash.
To get a evenly distributed element of Zq multiple HMAC with keys 0, 1, ... get concatenated
:return: hash(data) from Zq
"""
msg = str(data).encode()
# each element of Zp should be equally likely, therefore the hash need to be extended
required_hash_concatenations = int(math.ceil((math.log(self.q) + 256) / 512))
h = ’’
for i in range(required_hash_concatenations):

h += hmac.new(key=str(i).encode(), msg=msg, digestmod=sha512).hexdigest()
return self.Zq(int(h, 16))

def prod(values):
"""
Calculated the product of the given values from Gq.
(This corresponds to point addition in elliptic curves)
:param values: generator of elements from Gq
:return: the product of the given elements
"""
p = values[0]
for v in values[1:]:

p *= v
return p
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def is_element_of_group(x, p, q):
return 0 < x < p and pow(x, q, p) == 1

def pvss_example(t=3, n=5):
print("\n%d out of %d pvss example\n" % (t, n))

dealer = PVSS(t, n)
participants = [PVSS(t, n) for _ in range(n)]
anyone = PVSS(t, n)

public_keys = [p.generate_keypair(return_private_key=False) for p in participants]
private_keys = [p.keypair.private_key for p in participants]
print(’private keys: ’ + str(private_keys))
print(’public keys: %s\n’ % str(public_keys))

secret = dealer.init_secret()
print(’secret: %s\n’ % str(secret))

shares = [dealer.G ** dealer.evaluate_polynomial(i + 1) for i in range(n)]
encrypted_shares, proof = dealer.share(public_keys)
print(’Encrypted shares: ’ + str(encrypted_shares))

decrypted_shares = [participants[i].decrypt(encrypted_shares[i])[0] for i in range(n)]
decrypted_share_proofs = [participants[i].decrypt(encrypted_shares[i])[1] for i in range(n)]
print(’Decrypted shares: %s\n’ % str(decrypted_shares))

shares_for_recover = decrypted_shares[:]
for not_participating_index in random.sample(range(n), n-t):

shares_for_recover[not_participating_index] = None

recovered_secret = anyone.recover(shares_for_recover)
print(’Shares for recover: %s\n’ % str(shares_for_recover))
print(’Recovered secret: %s\n’ % str(recovered_secret))

verification_result = anyone.verify_shares(encrypted_shares, proof, public_keys)
print(’Share validity proof: ’ + str(proof))
print(’Verification result: %s\n’ % str(verification_result))

verification_results_decryption = [anyone.verify_share_decryption(
decrypted_shares[i], encrypted_shares[i], decrypted_share_proofs[i], public_keys[i])
for i in range(n)]

print(’Decrypted share proofs: %s’ % str(decrypted_share_proofs))
print(’Verification results for decryption: %s\n’ % str(verification_results_decryption))

assert(shares == decrypted_shares)
assert(secret == recovered_secret)
assert(verification_result is True)
assert(verification_results_decryption == [True] * n)

File: Zp.py
import math
from Zn import Zn

def Zp(p):
return lambda value: Zn(value, p)

def define_group(p):
q = (p - 1) // 2
group = Zp(p)
group.generators = lambda: [group(2), group(3)]
group.size = lambda: q
group.bits = math.ceil(math.log(p, 2))
return group
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# the smallest possible groups for testing, p is a safe prime, 2 and 3 are generators

Zp_23 = define_group(23)
Zp_47 = define_group(47)
Zp_167 = define_group(167)
Zp_263 = define_group(263)
Zp_359 = define_group(359)
Zp_383 = define_group(383)
Zp_479 = define_group(479)
Zp_503 = define_group(503)
Zp_719 = define_group(719)
Zp_839 = define_group(839)
Zp_863 = define_group(863)
Zp_887 = define_group(887)
Zp_983 = define_group(983)
Zp_1319 = define_group(1319)
Zp_1367 = define_group(1367)

# groups from 128, 256, up to 8192 bits based on safe primes calculated from pi
# also here 2 and 3 are independent generators of the group

Zp_128 = define_group(int(
’c90fdaa22168c234c4c6628b80dc1daf’, 16))

Zp_256 = define_group(int(
’c90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b15031f’, 16))

Zp_512 = define_group(int(
’c90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139b22’
’514a08798e3404ddef9519b3cd3a431b302b0a6df25f14374fe1356d6d535a77’, 16))

Zp_1024 = define_group(int(
’c90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139b22’
’514a08798e3404ddef9519b3cd3a431b302b0a6df25f14374fe1356d6d51c245’
’e485b576625e7ec6f44c42e9a637ed6b0bff5cb6f406b7edee386bfb5a899fa5’
’ae9f24117c4b1fe649286651ece45b3dc2007cb8a163bf0598da48361c7e4caf’, 16))

Zp_1536 = define_group(int(
’c90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139b22’
’514a08798e3404ddef9519b3cd3a431b302b0a6df25f14374fe1356d6d51c245’
’e485b576625e7ec6f44c42e9a637ed6b0bff5cb6f406b7edee386bfb5a899fa5’
’ae9f24117c4b1fe649286651ece45b3dc2007cb8a163bf0598da48361c55d39a’
’69163fa8fd24cf5f83655d23dca3ad961c62f356208552bb9ed529077096966d’
’670c354e4abc9804f1746c08ca18217c32905e462e36ce3be39e772c18331077’, 16))

Zp_2048 = define_group(int(
’c90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139b22’
’514a08798e3404ddef9519b3cd3a431b302b0a6df25f14374fe1356d6d51c245’
’e485b576625e7ec6f44c42e9a637ed6b0bff5cb6f406b7edee386bfb5a899fa5’
’ae9f24117c4b1fe649286651ece45b3dc2007cb8a163bf0598da48361c55d39a’
’69163fa8fd24cf5f83655d23dca3ad961c62f356208552bb9ed529077096966d’
’670c354e4abc9804f1746c08ca18217c32905e462e36ce3be39e772c180e8603’
’9b2783a2ec07a28fb5c55df06f4c52c9de2bcbf6955817183995497cea956ae5’
’15d2261898fa051015728e5a8aaac42dad33170d04507a33a85521abdf53ee2f’, 16))

Zp_3072 = define_group(int(
’c90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139b22’
’514a08798e3404ddef9519b3cd3a431b302b0a6df25f14374fe1356d6d51c245’
’e485b576625e7ec6f44c42e9a637ed6b0bff5cb6f406b7edee386bfb5a899fa5’
’ae9f24117c4b1fe649286651ece45b3dc2007cb8a163bf0598da48361c55d39a’
’69163fa8fd24cf5f83655d23dca3ad961c62f356208552bb9ed529077096966d’
’670c354e4abc9804f1746c08ca18217c32905e462e36ce3be39e772c180e8603’
’9b2783a2ec07a28fb5c55df06f4c52c9de2bcbf6955817183995497cea956ae5’
’15d2261898fa051015728e5a8aaac42dad33170d04507a33a85521abdf1cba64’
’ecfb850458dbef0a8aea71575d060c7db3970f85a6e1e4c7abf5ae8cdb0933d7’
’1e8c94e04a25619dcee3d2261ad2ee6bf12ffa06d98a0864d87602733ec86a64’
’521f2b18177b200cbbe117577a615d6c770988c0bad946e208e24fa074e5ab31’
’43db5bfce0fd108e4b82d120a92108011a723c12a787e6d788719a10bdefa25f’, 16))

Zp_4096 = define_group(int(
’c90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139b22’
’514a08798e3404ddef9519b3cd3a431b302b0a6df25f14374fe1356d6d51c245’
’e485b576625e7ec6f44c42e9a637ed6b0bff5cb6f406b7edee386bfb5a899fa5’
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’ae9f24117c4b1fe649286651ece45b3dc2007cb8a163bf0598da48361c55d39a’
’69163fa8fd24cf5f83655d23dca3ad961c62f356208552bb9ed529077096966d’
’670c354e4abc9804f1746c08ca18217c32905e462e36ce3be39e772c180e8603’
’9b2783a2ec07a28fb5c55df06f4c52c9de2bcbf6955817183995497cea956ae5’
’15d2261898fa051015728e5a8aaac42dad33170d04507a33a85521abdf1cba64’
’ecfb850458dbef0a8aea71575d060c7db3970f85a6e1e4c7abf5ae8cdb0933d7’
’1e8c94e04a25619dcee3d2261ad2ee6bf12ffa06d98a0864d87602733ec86a64’
’521f2b18177b200cbbe117577a615d6c770988c0bad946e208e24fa074e5ab31’
’43db5bfce0fd108e4b82d120a92108011a723c12a787e6d788719a10bdba5b26’
’99c327186af4e23c1a946834b6150bda2583e9ca2ad44ce8dbbbc2db04de8ef9’
’2e8efc141fbecaa6287c59474e6bc05d99b2964fa090c3a2233ba186515be7ed’
’1f612970cee2d7afb81bdd762170481cd0069127d5b05aa993b4ea988d8fddc1’
’86ffb7dc90a6c08f4df435c93402849236c3fab4d27c7026c1d4dcb2637aa8ff’, 16))

Zp_6144 = define_group(int(
’c90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139b22’
’514a08798e3404ddef9519b3cd3a431b302b0a6df25f14374fe1356d6d51c245’
’e485b576625e7ec6f44c42e9a637ed6b0bff5cb6f406b7edee386bfb5a899fa5’
’ae9f24117c4b1fe649286651ece45b3dc2007cb8a163bf0598da48361c55d39a’
’69163fa8fd24cf5f83655d23dca3ad961c62f356208552bb9ed529077096966d’
’670c354e4abc9804f1746c08ca18217c32905e462e36ce3be39e772c180e8603’
’9b2783a2ec07a28fb5c55df06f4c52c9de2bcbf6955817183995497cea956ae5’
’15d2261898fa051015728e5a8aaac42dad33170d04507a33a85521abdf1cba64’
’ecfb850458dbef0a8aea71575d060c7db3970f85a6e1e4c7abf5ae8cdb0933d7’
’1e8c94e04a25619dcee3d2261ad2ee6bf12ffa06d98a0864d87602733ec86a64’
’521f2b18177b200cbbe117577a615d6c770988c0bad946e208e24fa074e5ab31’
’43db5bfce0fd108e4b82d120a92108011a723c12a787e6d788719a10bdba5b26’
’99c327186af4e23c1a946834b6150bda2583e9ca2ad44ce8dbbbc2db04de8ef9’
’2e8efc141fbecaa6287c59474e6bc05d99b2964fa090c3a2233ba186515be7ed’
’1f612970cee2d7afb81bdd762170481cd0069127d5b05aa993b4ea988d8fddc1’
’86ffb7dc90a6c08f4df435c93402849236c3fab4d27c7026c1d4dcb2602646de’
’c9751e763dba37bdf8ff9406ad9e530ee5db382f413001aeb06a53ed9027d831’
’179727b0865a8918da3edbebcf9b14ed44ce6cbaced4bb1bdb7f1447e6cc254b’
’332051512bd7af426fb8f401378cd2bf5983ca01c64b92ecf032ea15d1721d03’
’f482d7ce6e74fef6d55e702f46980c82b5a84031900b1c9e59e7c97fbec7e8f3’
’23a97a7e36cc88be0f1d45b7ff585ac54bd407b22b4154aacc8f6d7ebf48e1d8’
’14cc5ed20f8037e0a79715eef29be32806a1d58bb7c5da76f550aa3d8a1fbff0’
’eb19ccb1a313d55cda56c9ec2ef29632387fe8d76e3c0468043e8f663f4860ee’
’12bf2d5b0b7474d6e694f91e6dbe115974a3926f12fee5e438777cb6ac52db87’, 16))

Zp_8192 = define_group(int(
’c90fdaa22168c234c4c6628b80dc1cd129024e088a67cc74020bbea63b139b22’
’514a08798e3404ddef9519b3cd3a431b302b0a6df25f14374fe1356d6d51c245’
’e485b576625e7ec6f44c42e9a637ed6b0bff5cb6f406b7edee386bfb5a899fa5’
’ae9f24117c4b1fe649286651ece45b3dc2007cb8a163bf0598da48361c55d39a’
’69163fa8fd24cf5f83655d23dca3ad961c62f356208552bb9ed529077096966d’
’670c354e4abc9804f1746c08ca18217c32905e462e36ce3be39e772c180e8603’
’9b2783a2ec07a28fb5c55df06f4c52c9de2bcbf6955817183995497cea956ae5’
’15d2261898fa051015728e5a8aaac42dad33170d04507a33a85521abdf1cba64’
’ecfb850458dbef0a8aea71575d060c7db3970f85a6e1e4c7abf5ae8cdb0933d7’
’1e8c94e04a25619dcee3d2261ad2ee6bf12ffa06d98a0864d87602733ec86a64’
’521f2b18177b200cbbe117577a615d6c770988c0bad946e208e24fa074e5ab31’
’43db5bfce0fd108e4b82d120a92108011a723c12a787e6d788719a10bdba5b26’
’99c327186af4e23c1a946834b6150bda2583e9ca2ad44ce8dbbbc2db04de8ef9’
’2e8efc141fbecaa6287c59474e6bc05d99b2964fa090c3a2233ba186515be7ed’
’1f612970cee2d7afb81bdd762170481cd0069127d5b05aa993b4ea988d8fddc1’
’86ffb7dc90a6c08f4df435c93402849236c3fab4d27c7026c1d4dcb2602646de’
’c9751e763dba37bdf8ff9406ad9e530ee5db382f413001aeb06a53ed9027d831’
’179727b0865a8918da3edbebcf9b14ed44ce6cbaced4bb1bdb7f1447e6cc254b’
’332051512bd7af426fb8f401378cd2bf5983ca01c64b92ecf032ea15d1721d03’
’f482d7ce6e74fef6d55e702f46980c82b5a84031900b1c9e59e7c97fbec7e8f3’
’23a97a7e36cc88be0f1d45b7ff585ac54bd407b22b4154aacc8f6d7ebf48e1d8’
’14cc5ed20f8037e0a79715eef29be32806a1d58bb7c5da76f550aa3d8a1fbff0’
’eb19ccb1a313d55cda56c9ec2ef29632387fe8d76e3c0468043e8f663f4860ee’
’12bf2d5b0b7474d6e694f91e6dbe115974a3926f12fee5e438777cb6a932df8c’
’d8bec4d073b931ba3bc832b68d9dd300741fa7bf8afc47ed2576f6936ba42466’
’3aab639c5ae4f5683423b4742bf1c978238f16cbe39d652de3fdb8befc848ad9’
’22222e04a4037c0713eb57a81a23f0c73473fc646cea306b4bcbc8862f8385dd’
’fa9d4b7fa2c087e879683303ed5bdd3a062b3cf5b3a278a66d2a13f83f44f82d’
’df310ee074ab6a364597e899a0255dc164f31cc50846851df9ab48195ded7ea1’
’b1d510bd7ee74d73faf36bc31ecfa268359046f4eb879f924009438b481c6cd7’
’889a002ed5ee382bc9190da6fc026e479558e4475677e9aa9e3050e2765694df’
’c81f56e880b96e7160c980dd98a573ea4472065a139cd2906cd1cb72a081a97f’, 16))
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File: Zn.py
class Zn(object):

"""
wrapper class for easy arithmetic over integers mod n
"""

def __init__(self, value, mod):
self.value = value % mod
self.mod = mod

def __int__(self):
return self.value

def __add__(self, other):
return Zn(self.value + int(other), self.mod)

def __radd__(self, other):
return Zn(self.value + int(other), self.mod)

def __sub__(self, other):
return Zn(self.value - int(other), self.mod)

def __rsub__(self, other):
return Zn(self.value - int(other), self.mod)

def __mul__(self, other):
return Zn(self.value * int(other), self.mod)

def __rmul__(self, other):
return Zn(self.value * int(other), self.mod)

def __div__(self, other):
if isinstance(other, Zn):

return self * other.inverse()
return self * Zn(other, self.mod).inverse()

def __truediv__(self, other):
if isinstance(other, Zn):

return self * other.inverse()
return self * Zn(other, self.mod).inverse()

def __rdiv__(self, other):
return other * self.inverse()

def __rtruediv__(self, other):
return other * self.inverse()

def __pow__(self, power, mod=None):
if mod is None:

mod = self.mod
if isinstance(power, Zn):

power = power.value
else:

power = int(power)
return Zn(pow(self.value, power, mod), mod)

def __iadd__(self, other):
self.value = (self.value + int(other)) % self.mod
return self

def __isub__(self, other):
self.value = (self.value - int(other)) % self.mod
return self

def __imul__(self, other):
self.value = (self.value * int(other)) % self.mod
return self
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def inverse(self):
"""
only supported if mod is a prime (other cases are not needed)
"""
return self ** (self.mod - 2)

def __repr__(self):
return str(self.value)
# return ’Zn(%d, mod=%d)’ % (self.value, self.mod)

def __str__(self):
return str(self.value)

def __eq__(self, other):
if isinstance(other, Zn):

return self.value == other.value
return self.value == int(other) % self.mod

def __ne__(self, other):
if isinstance(other, Zn):

return self.value != other.value
return self.value != int(other) % self.mod
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A.3 Attack on the Use of a Fixed Initial Seed

In the following, we provide a proof of concept implementation for the attack in regard to
the use of a predefined seed in the hashchain-based random beacon protocol, as described
in section 5.7. We use Python 3.6 for our implementation. Using the attack we show
that an attacker controlling t out of n nodes can precompute at least t random beacon
values after protocol start.
import hashlib
import secrets

NUM_PARTICIPANTS = 100
NUM_ATTACKERS = 30
COMMITMENT_DEPTH = 100
NUM_RANDOM_BEACONS = 50

# initialize R_0 with fractional part of pi
R = [0x243f6a8885a308d313198a2e03707344a4093822299f31d0082efa98ec4e6c89]

def H(x):
return int.from_bytes(

hashlib.sha256(x.to_bytes(32, ’big’)).digest(),
’big’

)

def random_secret():
return secrets.randbits(256)

def iterated_hash(value, iterations):
for i in range(iterations):

value = H(value)
return value

def get_preimage(seed, image, max_iterations=1000):
current = seed
for _ in range(max_iterations):

if H(current) == image:
return current

current = H(current)
return None

def attack(C_honest):
print("ATTACK")

def find_commitment(lowerbound, upperbound):
while True:

s = random_secret()
c = iterated_hash(s, COMMITMENT_DEPTH)
if lowerbound < c < upperbound:

return s, c

# set of all commitments
C = C_honest[:]

# secrets for all attacker commitments
S = dict()

# add all but one (initial) attacker commitment to C
for i in range(NUM_ATTACKERS - 1):

s = random_secret()
c = iterated_hash(s, COMMITMENT_DEPTH)
S[c] = s
C.append(c)

C.sort()
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# add attacker commitment at index Pi % NUM_PARTICIPANTS
# this ensures that the first leader an attacker
idx_R0 = R[0] % NUM_PARTICIPANTS
s_start, c_start = find_commitment(C[idx_R0 - 1], C[idx_R0])
S[c_start] = s_start
C.insert(idx_R0, c_start)

# build a chain in such a way that each attacker is the chain once
# a colluding attacker can predict as many random values as there are attackers
attacker_idx = [i for i, c in enumerate(C) if c in S]
available_idx = attacker_idx[:]
available_idx.remove(idx_R0)
current_idx = idx_R0
R_current = R[0]

while available_idx:
print(NUM_ATTACKERS - len(available_idx), available_idx, current_idx)
while True:

c = C[current_idx]
R_next = H(R_current ^ get_preimage(S[c], c))
next_idx = R_next % NUM_PARTICIPANTS
if next_idx in available_idx:

# next leader is again a attack node
available_idx.remove(next_idx)
R_current, current_idx = R_next, next_idx
break

else:
# try again using a modified commitment for the same attack idx
lowerbound, upperbound = 0, 2**256-1
if current_idx > 0: lowerbound = C[current_idx - 1]
if current_idx + 1 < NUM_PARTICIPANTS: upperbound = C[current_idx + 1]
sn, cn = find_commitment(lowerbound, upperbound)
C[current_idx] = cn
S[cn] = sn
del S[c]

print(available_idx, current_idx)
return S

# list of all secrets, initialized with the commitments of the honest participants
_secrets = [random_secret() for _ in range(NUM_PARTICIPANTS - NUM_ATTACKERS)]
# _secrets = [random_secret() for _ in range(NUM_PARTICIPANTS)]

# transform secrets into dict: dict[commitment] => secret
_secrets = {iterated_hash(s, COMMITMENT_DEPTH): s for s in _secrets}

commitments = list(_secrets) # list of commitments of all participants
commitments_attacker = [] # only of the attacker

# add the attacker commitments
for commitment, secret in attack(commitments).items():

commitments.append(commitment)
commitments_attacker.append(commitment)
_secrets[commitment] = secret

commitments.sort()
attacker_idx = [i for i, c in enumerate(commitments) if c in commitments_attacker]

print()
print("RANDOM BEACON OUTPUT")
print(f’ 0: {R[-1]:064x}; initial seed’)
for i in range(1, NUM_RANDOM_BEACONS):

idx = R[-1] % NUM_PARTICIPANTS
c = commitments[idx]
preimage = get_preimage(_secrets[c], c)
R.append(H(R[-1] ^ preimage))
print(f’{i:>3}: {R[-1]:064x}; calculated by an attacker: {idx in attacker_idx}’)

commitments[idx] = preimage
_secrets[preimage] = _secrets[c]
del _secrets[c]
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